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Abstract With the increasing interest in personalized
medicine, over the last decade, sequential multiple assignment
randomized trials (SMARTs) have become a more common
fixture of the clinical trial landscape. Primarily of use in the
identification of dynamic treatment regimes, they have expe-
rienced a shift from the more complex designs of the past to
the considerably streamlined versions seen today. In this
review, we summarize their history, outline recent and ongo-
ing examples, and discuss some of the important methodolog-
ical developments for their design and implementation.
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Introduction

Personalized medicine is a general term for patient-centric
disease management. Its fundamental philosophy—Btreat the
patient, not the diagnosis^—is grounded in the idea that
outcomes may be improved if treatments are tailored to indi-
vidual patient characteristics, rather than the traditional
approach of choosing a single treatment for all patients based
on the best population-average outcome. Despite this simple

principle, optimizing disease management at the patient level
presents numerous challenges, both theoretical and practical.

Dynamic treatment regimes (DTRs), also known as
adaptive treatment strategies, are an important component
of personalized strategies for treatment. DTRs are deci-
sion rules taking patient information (such as age, disease
severity, or even response to prior treatments) as input,
which then output treatment recommendations unique to
that individual. A DTR could be as simple as Bprescribe
intervention A (say a traditional consultation) if patient is
over 65 years of age, otherwise prescribe intervention B
(a consultation performed via a mobile phone app),^ but
they may be considerably more complex.

A single-treatment decision, such as the previous example,
is often referred to as an individualized treatment rule.
More generally, a DTR is a sequence of decision rules,
recommending treatment decisions at fixed points over a
period of time (such as a follow-up period with multiple clinic
visits). What makes a DTR truly Bdynamic,^ however, is a
capacity to provide different treatment recommendations
dependent on response to previous treatments. This is partic-
ularly useful as it allows more complex relationships between
current treatment, past treatment(s), and patient characteristics
to be taken into account.

As a simple example, we consider a hypothetical study of
treatments for depression. Suppose that we were interested in
comparing various sequences of treatments, where patients
receive either a primary pharmaceutical therapy or a
counseling-based therapy for the first 6 weeks, before
switching to one of two secondary pharmaceutical therapies.
Our goal is to identify the sequence of treatments that opti-
mizes outcome, as per some pre-defined response variable (for
example, depression score at 12 weeks). This process is com-
plicated by the potential for delayed effects of treatments and
the possibility of interactions (synergy or antagonism)

This article is part of the Topical Collection on Epidemiologic Methods

* Michael P. Wallace
michael.wallace@mcgill.ca

1 Department of Epidemiology, Biostatistics and Occupational Health,
McGill University, 1020 Pine Avenue West, Montreal, QC H3A
1A2, Canada

2 Department of Mathematics and Statistics, McGill University,
Montreal, QC H3A 2K6, Canada

Curr Epidemiol Rep (2016) 3:225–232
DOI 10.1007/s40471-016-0079-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s40471-016-0079-3&domain=pdf


between treatments given at different stages of the treatment
sequence. An example of the latter might be that patients who
initially receive counseling will respond better to the later
treatments—perhaps due to increased compliance.
Alternatively, the initial treatment may have a delayed effect
but perhaps only in patients with certain characteristics.

One route to identification of such interactions and effects
is to consider more sophisticated trial designs. Sequential
multiple assignment randomized trials (SMARTs) were first
introduced as Bbiased coin adaptive within-subject designs^
by Lavori and Dawson [1, 2], with the general framework
proposed by Murphy [3]. SMARTS are characterized by
various treatment sequences, with Fig. 1a as a schematic of a
possible SMART for our preceding example. Here, patients
are randomized to one of the two initial treatments and then, at
6 weeks, randomized again to one of the two secondary treat-
ments. If randomization was done within each of the initial
treatment groups, this could guarantee that a cohort followed
each of the four possible treatment regimes (A-C, A-D, B-E,
and B-F) allowing a direct comparison of each. These are
referred to as Bembedded regimes.^

While the term Bsequential^ in SMARTwould suggest that
these trials require randomization to be performed in
sequence, it is easy to see that SMARTs could equally well
be operationalized by randomizing participants only once to a
sequence of treatments that is embedded in the trial. In the
above example, where randomization is independent of all
covariates, the design may be further simplified by noting its
equivalence to a four-arm randomization to one of the four
embedded treatment sequences or even as a factorial trial with
the second randomization merely delayed in time. Such an
example is therefore amenable to more established (and
straightforward) techniques. Trials of this nature, where the
second-stage treatment does not depend on any intermediate
responses, can be used to learn about DTRs even though the
trials themselves do not incorporate a dynamic component.
However, as the goal of such trials is typically to learn about
tailoring, it is often preferable to incorporate some elements of

that personalization directly into the trial design itself. This
latter case is where SMARTs are of greatest utility. An example
is depicted in Fig. 1b, where instead of full randomization at
stage 2, only those patients who were deemed Bnon-
responders^ to the first treatment are re-randomized.
We shall focus primarily on these more Bdynamic^ SMARTs,
where a patient’s treatment path cannot be known at study entry.

As we begin to think about these designs more carefully, it
is critical to note the differences between a SMART and a
DTR. While fundamentally distinct—a SMART is a study
design, a DTR a treatment rule—it is important to additionally
appreciate that a SMART is typically simple, with second-
stage randomization often based on a very low dimensional
intermediate measurement such as Bearly response.^DTRs, in
contrast, will typically be more complex, adapting treatment
based on a larger number of intermediate measures. As we
shall soon discuss, it is infeasible to conduct a SMART that
involves tailoring on a large set of covariates, as the required
sample size is rarely available. However, data from simpler
SMARTs can nevertheless be used to estimate these more
highly tailored DTRs.

In this article, we will review the properties, and consider
examples, of SMARTs; summarize design considerations; and
conclude with a discussion of current research and unmet
needs in this vibrant and growing field.

Properties of SMARTs

Advantages

Two primary advantages of SMART trials are the ability to
detect delayed effects of treatment and the possibility of
discovering interactions between treatments given at different
stages of the treatment sequence [4]. In addition, while
SMARTs provide the ability to identify optimal treatment
regimes, they also possess a number of other useful properties.
Of particular use is that randomization may be based on
individual patient characteristics which, in addition to
improving patient outcomes, can improve patient experience
during the course of the trial. For example, in a more complex
study with a greater number of treatment options, a patient
may be able to specify a class of treatments to which they
are happy to be assigned. Similarly, randomization could be
based on how well or poorly a patient responds to an initial
treatment, avoiding potential ethical concerns such as
switching a patient away from a treatment that appears to be
effective. As randomization can still take place after the
observation of such preferences or response, the benefits of
randomization in terms of covariate balance are not lost.

While it may seem problematic to randomize based on
characteristics such as these, as long as the randomization
procedure is well documented, this may be taken into account

Fig. 1 Two common SMART designs, a all participants are re-
randomized following initial treatment and b only participants who failed
to respond to their initial treatment are re-randomized and the rest
continue the same treatment. A circled R indicates randomization; a
boxed letter indicates a particular treatment (with different letters not
necessarily corresponding to different treatments)
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at the analysis stage. Suppose, for example, that a trial is
conducted as in Fig. 1b, where Bnon-response^ is defined as
Bdesire to change treatment.^ The trial can then be viewed as
randomization to one of four treatment options, each taking
the form Binitiate treatment with option A; if patient responds
(does not wish to switch), remain on treatment A, otherwise
change to treatment C.^ Thus, in Fig. 1b, there are a total of
four embedded regimes that allow for tailoring, following the
measurement of response to the first stage of treatment. As
above, we can operationalize such a trial either by sequential
randomization (first at baseline, then after observing response
status) or by a single, up-front randomization to a particular
regime that dictates how treatment will be given depending on
response status. If response were multi-leveled, or a greater
number of covariates used to define the set of allowable stage
2 treatments, the number of embedded regimes in—and
correspondingly, the required sample size for—the trial would
increase. For practical purposes, when randomization is based
on intermediate outcomes, some low-dimensional summary
measure such as patient preference or response status should
be used [5].

The principle of randomization for non-responders features
in two large, notable trials in mental health. The Sequential
Treatment Alternatives to Relieve Depression (STAR*D) trial
[6] was designed to assess the treatment options available for
major depressive disorder. Recruiting over 4000 patients, the
study was split into four levels (including one that was itself
further split into two sub-levels), with patients proceeding to
subsequent levels if they did not respond to their current treat-
ment. While all patients were initially prescribed the same
treatment (citalopram), non-responders were subsequently
randomized up to three times. An interesting feature of this
study was that non-responders could express a preference for
their treatment options at the next randomization stage, a
mechanism that helped avoid ethical concerns including
randomization to an arm which maintained the use of a drug
whose side effects were deemed intolerable by the participant.

The Clinical Antipsychotic Trials of Intervention
Effectiveness (CATIE) for schizophrenia [7], meanwhile,
recruited 1460 patients to study treatment sequences of anti-
psychotic drugs. Participants were initially randomized to one
of five treatments and, if their symptoms worsened or the side
effects became intolerable, could choose to be randomized to
one of four secondary treatments within the first 18 months.
Both CATIE and STAR*D have been heavily studied within the
DTR literature [8–11]. A related CATIE study [12] considered
treatments for Alzheimer’s disease in a similar manner.

It has been purported that SMARTs may provide results
that are more generalizable than traditional randomized
control trials (RCTs) and that, by virtue of the greater variety
of treatment options open to participants, trial dropout may be
lower than in a traditional RCT. To date, there is no clear
evidence of the former claim, although the STAR*D and

CATIE trials were specifically designed to have few exclusion
criteria so as to assess therapies in a broad clinical population.
There is some evidence that the retention rate of a SMART is
superior to that of traditional RCTs [13].

Challenges

An obvious limitation of SMARTs is one of power; every
randomization step splits the cohort into smaller groups, and
with multiple stages, we may find that the number of subjects
following any given treatment regime to its conclusion is low.
It is unsurprising that most SMART designs focus on just two
stages of treatment; subjects are initially randomized to one of
two (or more) treatments, followed up, then randomized to a
secondary treatment at some later point. Despite this simplicity,
however, there is still considerable flexibility in this approach.
As previously noted, randomization itself may be dependent on
patient characteristics, as may the point at which the second
randomization takes place (for example, the second stage may
be triggered by a clinical event such as disease severity passing
a pre-determined threshold rather than simple calendar time). In
addition, participants may not necessarily be randomized to a
new treatment at the second stage if, for example, they respond
well to the initial treatment.

A related challenge is that of the additional cost of running
a SMART instead of a more traditional design. SMARTs are
almost necessarily more complex than standard RCTs and will
usually require larger sample sizes to power them sufficiently.
In addition, the mere question of assessing power is itself non-
trivial; as we will discuss in greater detail below, it is often
advocated that one powers a study for simple two-arm com-
parisons of treatment Bpaths^ through the SMART, leaving
the estimation of an optimal DTR as a secondary goal, which
is typically viewed as more exploratory than confirmatory.

Modern-Day SMARTs

STAR*D and CATIE, along with a number of other studies
[14–18], were designed, run, and analyzed before the formal
SMART design framework was developed and in particular
before practical guidelines had been established. More recent
SMARTs tend to be much more simplistic. It is typical for
contemporary SMARTs to be limited to two stages, with at
most two treatment options per participant per stage. For
example, the most common SMART design is of the form
illustrated in Fig. 1b.

An example of such a design was featured in a recent trial
of neurobehavioral treatments for patients with metastatic
malignant melanoma undergoing high-dose interferon-alpha
therapy [19]. This study proposed randomizing 70 patients
to one of two initial treatments (e.g., citalopram or methylphe-
nidate) for 6 weeks, at which point symptoms would be eval-
uated. Response to treatment was defined as a Hamilton
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Depression Scale score below 12, with those patients who
respond continuing their initial treatment as they begin inter-
feron treatment. Non-responders, meanwhile, were to be
randomized to either augment their current treatment with
the other initial treatment or switch to the initial treatment
not yet tried.

This design gives rise to four different DTRs, which can be
compared in terms of the primary outcome (in this case,
maximizing adherence to interferon therapy). In addition, this
design allows the investigation of secondary aims, including
comparing the effects of the two initial treatments on
questionnaire measures at 6 weeks and switching versus
augmentation among non-responders in terms of the primary
outcome.

The BestFIT study [20], which is currently recruiting
participants, also follows the same general SMART design
to compare weight loss treatments. Participants are initially
randomized to either 3 or 7 weeks of a state-of-the-art therapy,
with responders continuing with that treatment. Non-
responders, meanwhile, are randomized to either augmenta-
tion of current treatment with portion controlled meals or
switching to an Bacceptance-based^ therapy.

The authors identify the following two Bcritical questions^
the study addresses: a primary aim to identify which secondary
treatment is preferred and a secondary objective of when to
identify sub-optimal response to the initial therapy. Despite
the title of the paper mentioning the development of individu-
alized weight loss treatments, this is listed as an Bexploratory
third aim,^ an issue that is again pertinent to sample size
calculations.

This general SMARTstructure of maintaining Bsuccessful^
treatments and randomizing all non-responders has been
featured in numerous other studies, including another study
of weight loss interventions [21], along with studies of atten-
tion hyperactivity disorder [22, 23] and multiple myeloma
[24]. In contrast—but still adhering to a principle of low
dimensionality—some studies re-randomize only those
patients who fail to respond to one specific initial treatment
(rather than all non-responders), such as the Adaptive
Characterizing Cognition in Non-Verbal Individuals with
Autism (CCNIA) Developmental and Augmented
Intervention trial [25] for school-age, non-verbal children with
autism spectrum disorder. In this study, patients were initially
randomized to one of two treatments, one of which included a
communication device. Researchers felt that it was inap-
propriate to re-randomize participants who had initially
received the device to a different treatment (regardless
of response). Consequently, those patients would continue
with the same treatment, with those who had responded
continuing at the same level, while non-responders would
have their treatment intensified. Non-responders to the
other initial treatment, meanwhile, would be randomized
to one of two treatment options.

A final and more general example of this style of SMART
design sees that all patients re-randomized to a second-stage
treatment regardless of response (although response can deter-
mine which treatment options are available). Examples include
the ExTENd study of alcohol dependence [26] and the study
Adaptive Reinforcement-Based Treatment for Pregnant Drug
Abusers [27]. This last design represents the more complex end
of most modern SMARTs, wherein the two-stage case with two
treatment choices at each stage of the SMART contains eight
distinct embedded DTRs.

SMART Design Issues

When compared with earlier studies such as STAR*D and
CATIE, the above-noted trials illustrate more recent trends in
SMART design towards smaller, more manageable studies.
This is largely due to the fact that a significant challenge in
SMART design lies in the required power and sample size
calculations. As noted above, SMARTs can easily incorporate
a large variety of different treatment regimes, with the
resulting sample size for any one of these embedded regimes
necessarily very small. Furthermore, the complexity of the
study question and design can lead to intractable sample size
calculations since considerable knowledge is required (for
example, knowledge of the stage 1 response rate may be
necessary to power stage 2), and some participants may con-
tribute information on the effect of more than one embedded
regime in the trial. To this end, Murphy [3] recommends that
the primary research question should focus on simple DTRs,
with few intermediate tailoring variables on which randomi-
zation may depend and few treatment options at each stage.
More generally, a SMART should be thought of as one study
in a series, perhaps with the ultimate goal of a confirmatory
randomized trial to compare a proposed DTR with standard
care [3, 28], conducted as a traditional two-arm trial.

Design is further complicated by the different possibilities
for the primary objective of a SMART. It is rare that a re-
searcher is interested in DTRs that are as simple as those
embedded in the trial, and yet, power calculations for a com-
parison of complex DTRs that tailor on possibly many more
variables than those used for second-stage randomization do
not exist. Moreover, there is typically insufficient information
available in the literature or in a pilot study to adequately
inform simulations. Thus, power is often based in primary
objectives that do not focus on the dynamic nature of the
treatments the analyst wishes to estimate. Instead, for example,
common primary goals of SMARTs are identification of the
best first-stage treatment or the best second-stage treatment
for non-responders to a specific first-stage treatment (an
approach taken by the trial for interferon therapy and
BestFIT). In principle, such simple (non-dynamic) objec-
tives can often be addressed by standard RCTs, but such
standard trials do not permit secondary analyses that

228 Curr Epidemiol Rep (2016) 3:225–232



incorporate tailoring. Thus, even with simplistic primary
objectives that do not require sequential randomization,
SMARTs are a necessity if our focus is specifically on
DTRs, such as comparison of two specific regimes, or
whether a specific DTR can be improved by further
tailoring of treatment.

As in all trials, prior knowledge should be used to identify
the treatments (set of DTRs) that should be considered. This
could be based on pilot studies, scientific expertise, or through
simulation-based approaches. A recent illustration of the latter
is provided by Rich et al. [29] who, in the context of warfarin
treatment, simulate SMARTs to identify which dosing strate-
gies should be investigated. In contrast, other authors have
conducted pilot studies to assess proposed treatment regimes
before committing to a full-scale SMART. For example,
Gunlicks-Stoessel et al. [30] conducted a 16-week pilot
SMART with 32 participants to study DTRs for adolescent
depression. The study aimed to address whether non-
response to initial treatment should be determined at 4 or
8 weeks and whether non-responders should have their treat-
ment intensified or augmented with a secondary treatment.
Chronis-Tuscano et al. [31] describe a similar pilot SMART
of ADHD treatments featuring 26 participants.

Having chosen a primary objective, power must be
explored. For a simpler, non-dynamic primary aim, tools exist
to compute power based on comparisons of main effects only
[22] (such as comparing the main effect of first-stage treat-
ment while controlling for second-stage treatment) or DTR
comparison methods based on test statistics using marginal
mean model variances (cf., e.g., http://sites.google.
com/a/umich.edu/kidwell/home/tools-for-design-and-analysis).
Alternatively, if the primary aim is to compare two embedded
DTRs, the calculations of Dawson and Lavori [32] are more
appropriate.

A further issue is one of optimal DTR estimation, whereby
tailoring variables are used (post hoc) to identify personalized
regimes not necessarily embedded in a SMART design.While
numerous methods have been proposed for estimation of
optimal DTRs [33, 34•], little work has considered them from
a power perspective. Dawson and Lavori [32] discuss how
their sample size methods impact optimal DTR estimation,
but this remains a little-studied area.

The powering of SMART trials is not limited to the
simplest, Beveryday^ settings already discussed. Another
important, more specialized, class of SMART design focuses
on clustered data, with interventions delivered at a group level.
A recent example is the Adaptive Implementation of Effective
Programs Trial (ADEPT) [35], which aimed to improve
evidence-based practice use and patient outcomes in partici-
pants with mood disorders. In this setup, the treatment
options—the use of external and/or internal facilitators—were
administered to all patients within one of 80 outpatient clinics,
with any subsequent re-randomization also administered in

clusters. The design of this clustered SMART featured sample
size calculations but only for the purpose of comparing initial
treatments—i.e., another non-dynamic primary aim.
Chakraborty et al. [34•, Sect. 5] derived sample size calcula-
tions for comparison of two or more embedded regimes within
a clustered SMART design.

A recurring theme in the literature (and indeed, one we
have highlighted here) is the problem of small sample sizes.
Tamura et al. [36], for example, have recently discussed
SMART designs in the context of rare diseases, describing a
Bsmall N^ SMART (or snSMART). Cheung et al. [37]
consider studies with staggered recruitment and introduce
the concept of a SMART with Adaptive Randomization
(SMART-AR), whereby intermediate analysis is used to
inform randomization probabilities as patients enter and pro-
ceed through a study. This approach proposes that at first,
when data are few, only Bsimple^ designs should be consid-
ered, but as more participants are recruited, the overall study
can become more complex. If patients are recruited quickly,
this will reduce to a standard (non-adaptive) SMART, and so,
SMART-AR is most advantageous when enrollment is spread
over time.

Conclusion

As interest in personalized medicine grows, so does the prev-
alence of SMART or SMART-like studies. Their appeal is
grounded in a number of attractive features, not least the abil-
ity to embed numerous dynamic treatment regimes for direct
comparison. Unfortunately, as early studies such as CATIE
and STAR*D demonstrate, it is easy for SMARTs to become
so complex that large samples (and considerable expense) are
required if meaningful results regarding treatment tailoring are
to be found.

Consequently, this has led more contemporary studies to be
much more limited in scope. Almost all of the SMARTs
discussed in this review featured only two stages of random-
ization, with at most eight embedded DTRs. This necessarily
restricts the extent to which truly individualized treatments
can be pursued, while simultaneously requiring more complex
(and expensive) trials than those following more established
designs. Indeed, nearly all of the examples of modern-day
SMARTs that we have discussed have a stated primary goal
of main effect comparisons of first- and second-stage treat-
ments, for which traditional RCTs can usually offer insight.

A major focus of recent methodological work has been
sample size calculations. For this, the primary aim of any
study becomes paramount, with older methods focusing on
powering for the aforementioned main effect comparisons.
Powering for more direct DTR comparisons has received
some recent attention, but is still limited in scope, and little
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work has been done towards what could be considered the
ultimate goal of optimal DTR estimation.

A closely related area is the development and estimation of
more tailored DTRs (see [33] for a comprehensive review).
Numerous methods have been proposed including, among
many others, g-estimation, Q-learning, and dynamic marginal
structural models [38–40]. All may be used on data generated
from a SMART to estimate treatment regimes that tailor on
numerous variables, not limited to those used to determine
treatment allocation in the SMART. These methods may also
be applied to observational data, potentially giving access to
much greater patient numbers at reduced cost and complexity
relative to a SMART. Many such methods rely on knowing or
modeling how treatment is allocated, and all rely on the
assumption of no unmeasured confounding. Hence, a
SMART would always be preferable, even if it is not always
feasible. For an introduction to DTRs and their estimation, the
interested reader is referred to Wallace and Moodie [41].

While more complex methods are required to estimate
more deeply tailored regimes, simple regimes that tailor
only in the variable used to determine second-stage
randomizations can be conducted quite simply using
intention-to-treat analysis, where the intended treatment
is determined by the outcome of the randomization. As
SMARTs have seen second-stage treatment triggered by
patient dissatisfaction with current treatment, and the con-
text of most SMARTs is such that alternative treatments
are not easily accessible, non-compliance with assigned
treatment is rare. Thus, Bas-treated^ analyses have not been
popular in the SMART literature. In principle, however, all
methods for DTR estimation could be applied to data with
non-compliance without additional modifications.

Although SMARTS do offer a valuable path towards DTR
analysis, there is something of a disconnect between the high
level of tailoring about which we wish to learn and what
SMARTs can realistically provide (see Table 1). At present,
despite their inherent complexity, most SMART designs do
not involve the level of tailoring which we are ultimately
interested in using in clinical practice. In many situations, it
may well be preferable to focus on observational data to
inform a traditional two-arm RCT comparing a proposed
DTR and standard care. Nevertheless, SMART design
continues to be of active interest to the research community,
and as further work is done—both in theory and in practice—
we hope to see more of its potential realized.
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