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Breaking the matching in nested case—control data offered several
advantages for risk estimation
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Abstract

Objective: To demonstrate the advantage of using weighted Cox regression to analyze nested case—control data in overcoming limi-
tations encountered with traditional conditional logistic regression.

Study Design and Setting: We analyzed data from 1,051 women who were sampled in a case—control study of lung cancer nested
within a cohort of breast cancer patients. We investigated how lung cancer risk is associated with radiation therapy and modified by smok-
ing, with both conditional logistic regression and weighted Cox regression models.

Results: In contrast to logistic regression, weighted Cox regression exploited the information regarding radiation dose received by each
individual lung. The weighted method also mitigated a problem of overmatching apparent in the data and revealed that the risk of
radiotherapy-associated lung cancer was modified by smoking (P = 0.026) with a hazard ratio of 4.09 (2.31, 7.24) in unexposed smokers
and 8.63 (5.04, 14.79) in smokers receiving doses > 13 Gy. The cumulative risk of lung cancer increased steadily with increasing radio-
therapy dose in smokers, whereas no such effect was found in nonsmokers.

Conclusion: The weighted Cox regression makes optimal and versatile use of the information in a nested case—control design, allowing
dose—response analysis of exposure to paired organs and enabling the estimation of cumulative risk. © 2016 Elsevier Inc. All rights reserved.
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1. Background and motivation

The nested case—control design aims to combine the ad-
vantages of the cohort and case—control designs, namely, to
benefit from the time dimension included in the outcome or
exposure measurement in the cohort design while enabling
significant savings in cost and time [1—4]. In the nested
case—control design, complete exposure data are collected
for all cases but only for a random sample of controls.
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Using a risk set sampling strategy, a prespecified number
of controls are sampled at each failure time among all indi-
viduals who are at risk at that time [2,3,5]. The traditional
way of analyzing such data is to perform a conditional lo-
gistic regression, stratified by matched case—control sets.
Although this method is easily implemented in standard
statistical software, it has some limitations: (1) as a conse-
quence of the matching, the matching factors cannot be
easily studied as risk factors [6]; (2) case—control sets that
are concordant for exposure do not contribute to the anal-
ysis and overmatching at the design stage can reduce the
statistical power [7,8]; (3) although the matching on time
enables hazard ratios to be estimated from a multivariable
conditional logistic regression model, the cumulative inci-
dence rate cannot be estimated due to the “matching away”’
of time in the risk sets, unless the time information is recov-
ered [9—11]; and (4) when the research question concerns
paired organs (e.g., lung, breast, eye) for each of which
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What is new?

Key findings

e Breaking the matching of nested case-control data
and analyzing with weighted Cox regression can
overcome several limitations encountered in condi-
tional logistic regression.

e In an application to lung cancer risk following ra-
diation for breast cancer, the weighted method
mitigated a problem of overmatching at the design
stage, accommodated radiation doses to the two
lungs, and enabled estimation of the absolute risk
of lung cancer for different radiation doses.

e The cumulative incidence of the outcome can be
estimated due to the recovery of the time
information.

What this adds to what was known?

e By using the weighted method, we demonstrated
an interaction between radiotherapy and smoking
in breast cancer patients, and a dose-response ef-
fect in smokers.

What is the implication and what should change now?

e The weighted method should be considered as an
alternative to conditional logistic regression as it
makes optimal and versatile use of all available in-
formation from all sampled subjects (including
case-control sets concordant for exposure and in-
formation from paired organs).

exposure measurements are available, conditional logistic
regression cannot readily handle such clustered data.
Alternative methods have been developed for the analysis
of nested case—control data in which the matching between
the cases and their controls is broken and hazard ratios are esti-
mated by maximizing weighted likelihood equations [12,13].
These weighted methods have been investigated for their per-
formance in numerous simulation studies and illustrative data
analyses in the medical literature where they have been
compared to standard epidemiological designs [14—18]. A
weighted Cox regression has been shown to have an increased
efficiency in the analysis of nested case-control data compared
to the traditional conditional logistic regression approach
[3,14—18], and the possibility of overcoming the limitations
outlined previously was also mentioned [3,15]. In this study,
we used such nontraditional analyses to address a research
question concerning the risk of lung cancer after radiotherapy
for breast cancer, where data on paired organs (breast and
lung) were gathered in a nested case—control design that
was overmatched. The conditional logistic regression was thus

underpowered for the investigation of an interaction. In addi-
tion to mitigating this problem of overmatching and handling
the paired data, the weighted partial likelihood enabled the
estimation of cumulative risk.

The effect of radiation therapy for breast cancer as a po-
tential risk factor for subsequent lung cancer has been
investigated in several studies for women who had postop-
erative breast cancer radiation treatment. An increased risk
of lung cancer has been shown for at least 5 years after the
adjuvant treatment and even decades later [19,20]. Smoking
is the main risk factor for developing lung cancer, and the
risk of developing lung cancer after radiotherapy was
shown to be particularly increased among smokers but
not statistically significant in nonsmokers [21—23]. The
interaction between these two carcinogens is however not
fully understood, and, to the best of our knowledge, there
is no published work investigating how the absolute (cumu-
lative) risk of lung cancer in smokers and nonsmokers de-
pends on radiation dose.

To address these questions, we used data that were
collected using a case—control design nested within a
cohort of Swedish breast cancer patients. Cases were
breast cancer patients subsequently diagnosed with lung
cancer, and incidence density sampling was used to select
matched controls from breast cancer patients without any
subsequent cancer diagnosis before their date of selection.
In addition to time since breast cancer diagnosis, controls
were matched on age, region of residence, and calendar
period of diagnosis. A subset of the data, including only
radiated women from the Stockholm region who were
cases of lung cancer, was previously analyzed in a case-
only design where the two lungs of the same woman were
compared [21]. The authors found a relative risk of 3.17
(1.66—6.06) for smokers to develop lung cancer on the
ipsilateral (radiated) side 10 or more years after radio-
therapy, in contrast to a relative risk of 0.9 (0.37—2.22)
in nonsmokers. They also reported evidence of a
dose—response trend in smokers but not in nonsmokers.
Although these findings suggest an interaction between
smoking and radiation, the design did not allow formal
testing of such interaction because both lungs in each
woman were assigned to either the smoker or nonsmoker
category, and the wide confidence intervals, due to small
sample size, did not allow for a meaningful upper bound
on the association of lung cancer with radiation in non-
smokers. Furthermore, this analysis did not make use of
any information from controls, nor from cases who were
not treated with radiotherapy, yet information was avail-
able for all of these individuals regarding the laterality
of the breast and lung cancers, as well as the radiation
dose received by each lung.

Because the data described previously had been sampled
from a well-defined cohort (i.e., a national register), the
weighted partial likelihood method is an appropriate
method of analysis [24]. The objective of this study is to
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demonstrate the advantages of using weighted partial likeli-
hood to optimize the statistical power for investigating a
potential interaction between radiation and smoking status
by including all information collected from all the sampled
study subjects and also widen the possibilities for analyses,
including the estimation of absolute risk [10,11] and how
this risk changes with dose to the lung in smokers and
nonsmokers.

2. Data source and study design

One hundred sixty-four thousand two hundred twenty-
eight (164,228) breast cancer patients were recorded in
the nationwide Swedish Cancer Register [25] between
1958 and 2001. This register can be considered as a cohort

in which the patients were followed up for lung cancer after
breast cancer diagnosis, with a median and maximum
follow-up time of 18 and 44 years, respectively. Nine hun-
dred (900) women were identified with a primary lung can-
cer subsequent to their breast cancer diagnosis. The
censoring times used in this study were date of death, last
follow-up or 31 December, 2001, whichever occurred first.
Patients diagnosed with a second breast cancer during
follow-up were censored at the date of this second breast
cancer diagnosis if they received radiotherapy at that time,
which was the case for 4% of the patients. Among the lung
cancer patients, 730 women had medical charts available
with dates of both diagnoses. One hundred ninety-three
(193) lung cancer cases from the Stockholm-Gotland re-
gion were available for the original case-only analysis
before data were collected from medical charts for the rest

Primary breast cancer patients registered in Sweden in the
period 1958-2001

n=164 228

A

n=900

Cases: Breast cancer patients registered
with primary subsequent LC

Ineligible:
Medical chart unavailable: n=162 >
Incomplete dates information: n=8

y

v
Controls (1:1 NCC design)

n=730

Cases with complete information on dates

Matched on:  decade of BC diagnosis,
age *5 years, region
with complete information on dates
n=726

N=1456 (726 cases / 726 controls + 4 unmatched cases)

Stockholm & Gotland: (193 cases” & 189 controls)
Rest of Sweden: (537 cases & 537 controls)

Patients sampled

}

Cases diagnosed with LC at least 5 years after BC
diagnosis and their matched controls:

n=1134 (565 cases / 565 controls + 4 unmatched cases)

Patients with information on treatment received
for breast cancer

(509 sets with 1 case/1 control, 29 cases and 16 controls)

n=1063

< Break matching and keep
unique patients

Patients available for analysis

n=1051 (538 cases / 513 controls)

Fig. 1. Flowchart outlining the selection of the study sample. ®The 193 patients were considered in a case-only design [21]. BC, breast cancer; LC,

lung cancer.
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of Sweden (see Fig. 1) [21]. Using incidence density sam-
pling, controls were sampled within the same register. Con-
trols had to be free of lung cancer at the case-defining date
and to match their case on three additional variables: the
decade of breast cancer diagnosis, age at breast cancer
diagnosis * 5 years and the region of residence (Stock-
holm-Gotland or the rest of Sweden).

We restrict our current analysis to cases whose lung can-
cer occurred at least 5 years after the breast cancer diag-
nosis to facilitate comparison with published studies
[19—23], as 5 years is estimated as a reasonable latency
period for observing a radiation-induced solid tumor
[20,26,27]. This restriction resulted in 565 patients and
their matched controls and four additional cases for whom
no matched control was assigned. Among these 1,134 pa-
tients, 71 were missing information on the adjuvant treat-
ment received for breast cancer (i.e., whether they had
received radiotherapy or not) and were removed from the
data set. Our final data set included 1,063 patients grouped
in 509 matched case—control sets, and, due to the selection
procedure mentioned previously, 29 unmatched cases, and
16 unmatched controls. As allowed by the nested case-
—control procedure, there were patients who had been
sampled several times: four cases had been sampled as con-
trols before their event time and eight controls had been
sampled twice. For the analysis with weighted partial likeli-
hood, we broke the matching of the 509 matched sets, and
kept, as required by the weighted partial likelihood
approach [28], all available patients with a unique record,
each of them contributing in the analysis until their last
follow-up time (event of lung cancer or censoring). Thus,
the four cases who had been previously sampled as controls
contributed only their case record, and the eight controls
who had been sampled twice contributed just 1 record with
their last follow-up time. The flowchart in Fig. 1 summa-
rizes all these steps in the preparation of the final analysis
data set consisting of 1,051 patients (538 cases and 513
controls).

In addition to the information on dates of diagnosis for
both breast and lung cancers, the data include information
about laterality of the cancers, information on smoking
habits at the time of breast cancer diagnosis and details
of the radiation therapy including radiation technique and
estimated mean cumulative radiation dose to both the ipsi-
lateral and contralateral (relative to breast cancer) lungs in
Gray (Gy). The dose estimation, which has been described
in detail previously, was conducted for each radiotherapy
technique [21]. In our analysis, we categorized the doses
in four categories: 0 Gy, <5 Gy, 5—13 Gy, and > 13 Gy,
that discriminated between the different techniques. In
addition, women who did not have radiotherapy were as-
signed a dose of 0 Gy for both lungs. Regarding smoking
habits, patients were categorized as smoker (including
former smokers) or nonsmoker at the time of breast cancer
diagnosis using information obtained from medical records
and from questionnaires sent to the surviving patients or to

the closest living relative [21,29]. Patients were followed
for lung cancer starting from 5 years after breast cancer
diagnosis and controls were censored at date of death, last
follow-up or 31 December 2001, whichever occurred first.
Patients diagnosed with a contralateral breast cancer during
follow-up were censored at the date of diagnosis if they
received radiotherapy for the contralateral breast cancer.

3. Statistical methods

We first compared the hazard ratio estimates obtained
from the conditional logistic regression approach and
weighted partial likelihood, with lung cancer (in either
lung) as the outcome, and radiotherapy and smoking as bi-
nary exposures. We performed univariate analyses for
each of these risk factors considered alone, and in the
multivariable analysis included an additional multiplica-
tive term to accommodate a potential interaction between
them. In addition to the exposure variables of interest, the
weighted analyses were adjusted for the matching factors,
thus providing adjusted estimates that are comparable to
those from the multivariable conditional logistic
regression.

3.1. Weighting

To analyze the data using weighted likelihood, each con-
trol must be weighted by the inverse probability of being
sampled for the study [24]. Each sampled control i is fol-
lowed up from a starting time s; until his/her censoring time
T; and is eligible as a potential control at all event times 7;
during this interval. The probability for i to be sampled at
least once during the study depends on the probability of
selection at each event time 7; between s; and 7; which in
turn depends on the size of the risk set R; at this time.
For a 1:1 case—control study with no matching other than
time, this probability is given by (1 — p;) = IIj y<zj<m
[1 — 1/(R; —1)] which reflects the incidence density sam-
pling [12]. The product is taken over all event times at
which the control is available for selection and gives the
probability that individual i is not sampled at all. The sam-
pling procedure in our study included matching variables in
addition to time so that the risk set sizes and thus the (1 —
p;) were computed as mentioned previously in each of the
strata defined by the combinations of the matching factors.

To compute the sampling probabilities, basic informa-
tion for all members of the underlying cohort is needed,
that is, entry and censoring/event dates and the values of
the matching variables. Because our data were sampled
from a national register, this information was available.
The risk set sizes were computed from a Kaplan—Meier ta-
ble stratified on the three matching variables used for the
sampling, that is, decade of breast cancer diagnosis, age
in 10-year categories, and region of residence. All subse-
quent computation used simple algebra to arrive at the
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sampling weights, which are known as Kaplan—Meier type
weights [17]. By weighting the selected controls by the in-
verse of their sampling probability, they represent all the
similar patients in the underlying cohort who might have
been selected. In contrast, case patients get a weight of
one to reflect the certainty of being selected. Once the
weights are calculated, the data are readily analyzed using
weighted Cox regression available in any standard statisti-
cal software package.

3.2. Dose—response analysis

As data were available on the mean cumulative radiation
dose received at each lung, we performed a weighted Cox
regression following each lung from 5 years after breast
cancer diagnosis until the patient was diagnosed with lung
cancer or censored as defined previously. The Cox model
included these mean radiotherapy doses subdivided into
four categories, binary smoking status, and their two-way
interaction. We used the same Kaplan—Meier weights as
in the previous analysis. The Cox model also included a
cluster term to take into account the dependency of the out-
comes for the two lungs in the same patient.

3.3. Absolute risk calculation

The absolute risk for a lung to develop cancer can be
estimated from our model for any subgroup of interest.
As an illustration, we calculated this risk at various time
points from 5 to 25 years after breast cancer diagnosis for
patients aged 54 years at breast cancer diagnosis (the mean
age in our data), using the hazard ratio estimates from the
weighted Cox regression analysis described in the previous
paragraph, and the baseline hazard function estimate with
the adapted Breslow estimator as proposed by Cai and
Zheng [10] and illustrated in detail by Salim et al. [11].

3.4. Software

All data management and analysis were performed with
the R statistical package (version 3.1.2) (http://www.R-
project.org). To estimate the Kaplan—Meier weights and
run the Cox regression analysis, we used the survfir and
coxph functions, respectively, provided in the survival
package. The baseline hazard was estimated by using the
command basehaz with the option centered = FALSE.

4. Results

The univariate and adjusted estimates from the tradi-
tional conditional logistic regression analyses are presented
in the two first left columns of Table 1. The coefficients
[log(hazard ratio)] and their standard errors are presented
in the first column, whereas the hazard ratios with the cor-
responding confidence intervals are in the second column.
Smoking was identified as being significantly associated
with lung cancer. There was an increased risk of developing

lung cancer for women who received radiotherapy, but the
result was not statistically significant. There was some ev-
idence of an interaction between radiotherapy and smoking,
but this did not achieve statistical significance, despite the
use of a much larger data set than in the previous published
work [21]. Including age as a continuous variable in the
analysis to control for residual confounding did not alter
the estimates nor the standard errors/confidence intervals
presented in Table 1. The lack of statistical power for esti-
mation of the radiotherapy effect became apparent from a
descriptive analysis of the distribution of treatment within
risk sets, where we found that in 286 of the 509 sets, both
the case and control were treated with radiotherapy, and for
57 sets, neither case nor control received radiotherapy.
Thus, 67% (343/509) of the sets are uninformative to study
the radiotherapy exposure due to cases and controls being
concordant for exposure. Examining the use of radio-
therapy for breast cancer across calendar time, we found
that before the mid 1970s, more than 80% of patients
received radiotherapy as adjuvant treatment, so that the
matching on calendar time had induced a high concordance
in exposure in the matched sets (Fig. 2) with a consequent
loss of power in the conditional analysis.

Breaking the matching, we analyzed the data using
weighted Cox regression models adjusting for the matching
factors. The median time to event was 14 years after breast
cancer and the median time to censoring was 21 years. The
estimates (coefficients and standard errors, hazard ratios,
and confidence intervals) are presented in the two last col-
umns of Table 1. The estimates are similar in magnitude to
those from the conditional logistic regression, with smaller
(or equal) standard errors for all analyses and narrower con-
fidence intervals for the multivariate approach. We also ob-
tained a significant interaction between smoking and
radiotherapy.

The results from the weighted Cox regression analysis of
individual lungs are presented in Table 2. In addition to the
two exposures and their interaction term, we also included
age at breast cancer diagnosis in the model, as the univar-
iate analyses revealed that this was a potential confounder
(data not shown). The risk of developing lung cancer
among smokers increased with increasing radiotherapy
dose (P for trend = 0.026), with a hazard ratio of 8.63
(95% confidence interval: 5.04, 14.79) for smokers who
received a radiation dose higher than 13 Gy compared to
a hazard ratio of 4.09 for smokers who did not have radio-
therapy. In contrast, no such relationship was found among
nonsmokers. Inclusion of additional potential confounding
factors, such as tumor stage at breast cancer diagnosis,
use of chemotherapy and/or hormonal therapy and laterality
of the breast cancer, did not substantially alter the hazard
ratio estimates.

The estimates of absolute risk for a lung cancer at
various time points from 5 to 25 years after breast cancer
diagnosis are presented in Fig. 3 for women aged 54 years
at breast cancer diagnosis. There is a clear trend in the
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Table 1. Adjusted coefficients (log HR) with standard errors (SEs) and hazards ratio (HR) with 95% confidence interval (Cl) for developing lung

cancer 5 years or more after breast cancer

Conditional logistic regression

Weighted Cox regression®

Risk factors Log HR (SE) HR (95% CI) Log HR (SE) HR (95% CI)
Univariate
No radiotherapy Ref Ref Ref Ref
Radiotherapy 0.19 (0.16) 1.21 (0.89, 1.65) 0.20 (0.16) 1.23 (0.89, 1.69)
No smoking Ref Ref Ref Ref
Smoking 1.73 (0.19) 5.64 (3.89, 8.16) 1.94 (0.16) 6.93 (5.03, 9.58)
Multivariable + interaction
No radiotherapy and no smoking Ref Ref Ref Ref
Radiotherapy —0.003 (0.29) 0.997 (0.56, 1.76) —0.26 (0.25) 0.77 (0.47, 1.26)
Smoking 1.37 (0.32) 3.97 (2.13, 7.41) 1.38 (0.29) 3.96 (2.25, 6.97)
Interaction 0.54 (0.39) 1.71 (0.80, 3.65) 0.78 (0.34) 2.19(1.12, 4.30)

The conditional logistic regression is performed with 1,018 patients in 509 matched sets, and the weighted Cox regression is performed with

1,051 unique patients.

@ All weighted analyses include adjustment for the matching variables used in the sampling, that is, age (continuous), region, and decade of

diagnosis.

estimated risk over elapsed time and with radiation dose in
smokers, the highest risk estimates being for the smokers
receiving the highest radiation dose.

5. Discussion

In this study, we used weighted Cox regression models
to analyze nested case—control data and illustrated how this
nontraditional approach allowed for greater flexibility and a
wider choice of analyses compared to conditional logistic
regression. In an analysis of the risk of lung cancer subse-
quent to breast cancer, breaking the matching mitigated a
problem of overmatching and improved the statistical po-
wer, revealing a significant interaction between smoking
and radiotherapy. The weighted analysis also enabled

80

60
1

166

% treated by radiotherapy

55

total number of patients in five-year categories

T T T T T T T T
1960 1965 1970 1975 1980 1985 1990 1995

year

Fig. 2. Proportion of the 1,051 study patients who were treated by
radiotherapy, as a function of calendar time and with the numbers
of patients displayed on the plot.

straightforward handling of clustered data (i.e., pairs of
lungs) so that detailed exposure information could be used
which in turn facilitated the investigation of how the abso-
lute risk of lung cancer depends on the received radiation
dose to the lung and the smoking status of the patient.
Our findings of an increased relative risk of lung cancer
with increasing radiation dose in smokers are consistent
with the literature [21—23]. In contrast to Prochazka
et al. who treated the lung on the contralateral side as un-
exposed (limiting analysis to techniques for which the
received dose was negligible compared to the ipsilateral
side), we took advantage of exploiting the values of the
doses received by both the ipsilateral and contralateral lung
sides. The strength of the weighted method is thus that all
the information on radiation dose to both lungs could be
readily used, whereas the handling of paired organs in con-
ditional logistic regression would require selection of a sub-
sample for analysis (e.g., a case-only design as in
Prochazka et al. that we mentioned previously [21] or cases
and their ipsilateral controls [23]) with a consequent loss in
power. The method that we used also enabled us to show

Table 2. Hazard ratio (HR) and 95% confidence interval (Cl) for a lung
to develop cancer 5 years or more after breast cancer

Risk factors HR (95% CI)* P for trend
No radiotherapy—nonsmoking 1
No radiotherapy—smoking 4.09 (2.31, 7.24)
Radiotherapy—nonsmoking

<5 Gy 0.74 (0.42, 1.30)

5—13 Gy 0.92 (0.49, 1.75)

13 Gy+ 0.77 (0.43, 1.38)
Radiotherapy—smoking

<5 Gy 5.42 (3.06, 9.60)

5—13 Gy 7.15 (3.60, 14.20) 0.026°

13 Gy+ 8.63 (5.04, 14.79)

The weighted Cox regression was performed for the 2,102 lungs of
the 1,051 study patients, with a cluster term for patient.

@ The analyses were adjusted for age as a linear term.

b The P for trend was calculated for smokers only.
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Absolute risk to develop lung cancer after breast cancer

© no radiotherapy

+ radiotherapy dose < 5 Gy

X radiotherapy dose 5 - 13 Gy
* radiotherapy dose > 13 Gy

0.03
I

smokers

0.02
1

absolute risk to develop lung cancer

m :| nonsmokers

T T T T T T T
0 5 10 15 20 25 30

time since breast cancer (years)

Fig. 3. The estimated absolute risk (i.e., probability) of cancer in a
lung exposed to various radiation doses, estimated at various time
points from 5 to 25 years after breast cancer for patients aged
54 years at breast cancer diagnosis, assuming no competing risk of
death.

that the risk of developing lung cancer is modified by the
smoking status of the patient and that the absolute risk of
lung cancer in smokers increases with the radiotherapy
dose received at the lung site.

The data in this study were sampled following a nested
case—control design that was characterized by two weak-
nesses which limited the performance of standard condi-
tional logistic regression analysis. The relatively small
number of controls limited the power of the analysis
compared to studies with higher case—control ratios
[22,23] and made the conditional analysis more vulnerable
to loss of risk sets due to concordant exposure. This loss
was further exacerbated by matching unnecessarily [30]
on decade of treatment, which resulted in cases and con-
trols being exposed to similar treatment protocols or doses
of radiation. The loss of power due to these features was re-
flected in the larger standard errors of the estimated coeffi-
cients in the conditional logistic regression (Table 1) and, to
a lesser extent, the inability of the conditional logistic
regression analysis to identify the interaction between radi-
ation and smoking. The highlighting of the interaction term
in the weighted analysis was not only due to better effi-
ciency (smaller standard errors) but also to the larger
magnitude of the point estimate. To estimate the standard
errors from the weighted Cox regression, we used a robust
variance estimator that assumes the weights to be known.
To check whether this assumption affects the validity of
the standard errors, we recomputed the estimates using a
bootstrap procedure and found very similar (slightly nar-
rower) confidence intervals, indicating that the simple-to-
use robust estimator is reasonable.

In the dose—response analyses, radiation doses were
classified in four categories. Although this might be
perceived as a loss of information, it enabled us to avoid
any assumption of a linear relationship between dose and
risk. Moreover, the categorization accommodates the

potential inaccuracy in how the dose levels were recon-
structed from information on radiotherapy technique [21].
In a supplementary analysis, we implemented the weighted
Cox regression analysis with the dose as a continuous var-
iable and obtained similar results: for example, the hazard
ratio (95% confidence interval) for a smoker who received
a radiotherapy dose of 15 Gy was 8.37 (5.61, 12.48).

In keeping with the literature on radiation-induced lung
cancer [20,26,27], we used a 5-year latency period between
breast cancer diagnosis and lung cancer diagnosis. Interest-
ingly, the hazard ratio was below 1 within the first 5 years,
consistent with the suggestion that radiotherapy during this
period may offer a protective effect by eradicating any
latent cancer which was developing at the time of breast
cancer diagnosis [31]. However, when starting follow-up
at 5 years after breast cancer diagnosis, there was still some
evidence of nonproportional hazards for the radiation doses
in four categories. The proportional hazards assumption
was fully met when using a 10-year latency period—a la-
tency suggested by some clinical researchers [21,22]—
together with a finer level of categorization for the doses
(.e., 0, 0—5, 5—13, 13—21, and >21 Gy), and the esti-
mates obtained with these latency and dose categorizations
were similar to those presented in Tables 1 and 2 but with
some loss of power (data not shown).

A limitation of the Kaplan—Meier type of weights on
our setting is that although age was used as a caliper match-
ing variable (i.e., age =5 years) in the sampling design, the
weights were computed using 10-year age categories, a
reasonable choice to avoid categories that were too narrow
[17]. To assess the sensitivity of our results to these
weights, we reanalyzed the data with GLM weights [17]
and obtained very similar estimates (data not shown) indi-
cating that the categorical age variable captures the sam-
pling probabilities inherent in the caliper matching.

For a weighted likelihood analysis of nested case—con-
trol data to be feasible and valid, complete information
must be available for a minimum set of variables (entry
and censoring/event dates and matching factors) for all
members of the underlying cohort. In addition, the incom-
plete data from the incidence density subsampling of the
cohort must be missing at random, which requires that con-
trols have been randomly selected within the strata defined
by the matching variables and that any missing exposure in-
formation does not depend on the unobserved value [2,13].

In addition to illustrating a useful methodology for more
efficient use of nested case—control data, we obtained re-
sults of potential clinical interest, namely that the associa-
tion of breast cancer irradiation on lung cancer risk is
different (i.e., larger) for smokers and that this risk in-
creases with increasing radiation dose. Although these find-
ings are in line with other published work [21—23], they
should be interpreted with caution. The absolute risk esti-
mation treated death as a censoring event, so that we have
estimated the risk of lung cancer that would be observed if
there was no competing risk of death. In addition, as the
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confidence intervals were rather wide, the dose reconstruc-
tion procedure subject to inaccuracies, and information on
smoking was a simple binary variable [29,32], further
investigation is necessary to enable conclusions regarding
clinical relevance.

In summary, this study demonstrates several advantages
of weighted likelihood over conditional logistic regression
for matched nested case—control studies. This nontradi-
tional analysis makes more efficient use of all the available
data, can overcome problems due to overmatching, and al-
lows an extended choice of analyses such as estimating ab-
solute risk and handling health outcomes involving paired
organs.
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