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Abstract

Introduction Prospective pharmacovigilance aims to

rapidly detect safety concerns related to medical products.

The exposure model selected for pharmacovigilance

impacts the timeliness of signal detection. However, in

most real-life pharmacovigilance studies, little is known

about which model correctly represents the association and

there is no evidence to guide the selection of an exposure

model. Different exposure models reflect different aspects

of exposure history, and their relevance varies across

studies. Therefore, one potential solution is to apply several

alternative exposure models simultaneously, with each

model assuming a different exposure–risk association, and

then combine the model results.

Methods We simulated alternative clinically plausible

associations between time-varying drug exposure and the

hazard of an adverse event. Prospective surveillance was

conducted on the simulated data by estimating parametric

and semi-parametric exposure–risk models at multiple

times during follow-up. For each model separately, and

using combined evidence from different subsets of models,

we compared the time to signal detection.

Results Timely detection across the simulated associa-

tions was obtained by fitting a set of pharmacovigilance

models. This set included alternative parametric models

that assumed different exposure–risk associations and

flexible models that made no assumptions regarding the

form/shape of the association. Times to detection gen-

erated using a simple combination of evidence from

multiple models were comparable to those observed

under the ideal, but unrealistic, scenario where phar-

macovigilance relied on the single ‘true’ model used for

data generation.

Conclusions Simulation results indicate that, if the true

model is not known, an association can be detected in a

more timely manner by first fitting a carefully selected set

of exposure–risk models and then generating a signal as

soon as any of the models considered yields a test statistic

value below a predetermined testing threshold.

Key Points

Combining the results from alternative exposure–risk

models applied simultaneously can detect unknown

associations between drugs and adverse events in a

timely manner.

To detect unknown associations in

pharmacovigilance, we recommend combining

evidence from a carefully selected set of exposure–

risk models and generating a signal as soon as any of

the models considered yields a test statistic value

below a predetermined testing threshold.
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1 Introduction

Pharmacovigilance monitors the safety of a drug. The

importance of efficient and accurate adverse event (AE)

detection as a means for reducing adverse health outcomes

has stimulated research to improve the methods used for

pharmacovigilance [1–4].

One important challenge in real-life studies of drug

effects is the need to correctly specify the exposure–risk

model, which should account for variability in the dose,

duration, and timing of drug exposures [5, 6]. Each of these

components of time-varying exposure may affect AE risks

[7–11], but they are often ignored in pharmacovigilance

studies, which typically rely on very simple, arbitrarily

selected exposure models [12] such as ever/never use or

current use [13, 14]. For most pharmacovigilance studies

there is insufficient prior knowledge about the way that

drug exposure may affect the risks of the AE of interest,

and this uncertainty hinders the ability of a researcher to

identify a priori the single ‘etiologically correct’ exposure

model.

A consequence of this methodological challenge is the

wide array of exposure models used in different studies of

the same association. For example, several pharmacoepi-

demiological studies that investigated the association

between the use of non-steroidal anti-inflammatory drugs

(in prevalent and/or new users) and the risk of myocardial

infarction relied on a wide range of exposure models,

including (1) current use or dose (low/moderate or high),

with definitions of ‘current’ exposure ranging from expo-

sure on the same day as the index date to exposure 30 days

prior to the index date; (2) recent use, with different

durations of the relevant time window; (3) ever use; and (4)

duration of use, provided the study participant was a cur-

rent user [15–20]. Another example, reported in Tournier

et al. [21], concerned comparison of published studies that

assessed the association between exposure to different

mood stabilizers and the risk of metabolic events. Time-

varying exposure was defined differently across studies,

which could partly explain some conflicting results. For

example, when exposure was defined as total duration of

past use, the risk of diabetes mellitus did not vary across

users of different mood-stabilizers [22]. In contrast, when

binary indicators of exposure to a specific drug were used,

certain mood stabilizers were found to be associated with a

significantly higher risk of diabetes than others [23].

Current pharmacovigilance guidelines offer no advice

on how to select an exposure model [24] and many

applications have relied on simple exposure models,

without explaining the reasons for having chosen a specific

model (e.g., [13, 25, 26]). Yet, very different exposure

models may be necessary depending on the type of AE

(e.g., [27]) and pharmacokinetics/pharmacodynamics of

the drug of interest (e.g., [28, 29]).

While the first aim of pharmacovigilance is signal

detection, and a complete understanding of the underlying

association is not expected before a more detailed inves-

tigation has been conducted, misspecification of the true

exposure–risk association in a model used for pharma-

covigilance can increase the time to signal detection [30]

and substantially reduce the statistical power [7], and,

therefore, can decrease the probability of detection [7, 30].

Since different exposure models are sensitive to different

aspects of exposure history [31–33], one potential solution

is to apply several alternative exposure models simultane-

ously, each assuming a different exposure–risk association,

and then use appropriate statistical methods to combine

their results, as done in other fields [34–37]. However, to

the best of our knowledge, neither the analytical challenges

of combining results from alternative exposure models nor

the potential gains from this approach have been investi-

gated systematically in the context of pharmacovigilance.

In this article, we use simulation to investigate the potential

benefits of combining results of multiple exposure–risk

models. We compare the resulting times to signal detec-

tion, under a range of simulated, clinically plausible asso-

ciations between a time-varying drug exposure and the

hazard of an AE.

2 Methods

2.1 Simulations: Design, Assumptions, and Data

Generation

We simulated cohorts of 3000 new users of a hypothetical

drug, with individual exposures beginning at different

times and 5 years of follow-up for each person. Data

generation involved three consecutive steps. We first ran-

domly sampled 3000 time-varying dosage patterns from

actual data on the dispensing of benzodiazepines to adults

over the age of 65 years living in the Canadian province of

Québec. Second, we sampled 3000 AE times, independent

of the previous exposure pattern sampling, using times to

hospitalization for a fall-related injury observed in the

same cohort (details in Electronic Supplementary Material

1). In the third step, each time-varying exposure pattern

generated in step 1 was matched with one of the

event/censoring times generated in step 2. Matching was

performed in a way that ensured that simulated data were

consistent with a prespecified ‘true’ exposure–risk model

[38, 39]. We relied on a previously validated ‘permuta-

tional algorithm’ that matches an individual time-varying

exposure pattern with an AE at time t, using weighted
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sampling from the corresponding risk set R(t), with weights

proportional to the individual hazard at time t [38, 39].

Figure 2 in Electronic Supplementary Material 1 illustrates

this simulation technique graphically.

These three steps were used to simulate, in separate

‘simulation scenarios’, data from 11 alternative ‘true’

exposure models, each representing a different plausible

association between time-varying exposure to a drug and

the time to an AE. Simulation scenarios included six

simple models, (a)–(f) in Table 1, used routinely in phar-

macoepidemiology and one model, (g), that assumed a

withdrawal effect. Four additional simulation scenarios

accounted for more complex effects of past exposures,

including delayed or slowly decaying effects. Data for

these models, (h)–(k) in Table 2, were generated using

weighted cumulative effect (WCE) models [40, 41], where

the AE hazard on day t depended on the weighted sum of

the past doses up to day t. Weights reflected the relative

importance of doses taken at different times in the past

[40, 41]. Each of the four WCE models assumed a different

weight function (see Figure 3 in Electronic Supplementary

Material 1).

We generated 1000 cohorts of 3000 new users for

each of scenarios (a)–(k), corresponding to the

Table 1 Detailed descriptions of the alternative time-varying parametric models used to simulate, and then (re-)analyze, data linking drug

exposure with adverse events

Exposure model Exposures associated with hazard of an adverse

event on day t

Simulation

scenario (S) and/or

pharmacovigilance

model (P)a

Subsets containing each pharmacovigilance

modelb

(a) Current use Use on day t S P (i) (iii) (iv) (vi) (viii)

(b) Current dose Dosage on day t S P (i) (iii) (v) (vi) (ix)

(c) Use in the

past

30 days

Use within the 30 days prior to and including

day t

S P (i) (iii) (iv) (vi) (viii)

(c.1) Use in the

past

10 days

Use within the 10 days prior to and including

day t

P (vi) (viii)

(c.2) Use in the

past

60 days

Use within the 60 days prior to and including

day t

P (vi) (viii)

(d) Cumulative

dose in the

past

30 days

Cumulative dose within the 30 days prior to and

including day t

S P (i) (iii) (v) (vi) (ix)

(d.1) Cumulative

dose in the

past

10 days

Cumulative dose within the 10 days prior to and

including day t

P (vi) (ix)

(d.2) Cumulative

dose in the

past

60 days

Cumulative dose within the 60 days prior to and

including day t

P (vi) (ix)

(e) Duration of

use

Number of days of use prior to and including

day t

S P (i) (iii) (iv) (vi) (viii)

(f) Total

cumulative

dose

Total cumulative dose prior to and including

day t

S P (i) (iii) (v) (vi) (ix)

(g) Withdrawal

effect

Total cumulative dose prior to and including

day t, and discontinuation of treatment within

the 7 days prior to and including day t

S –

(l) No

association

The hazard of an adverse event was not in any

way associated with exposures

S –

a Exposure models used to simulate data are indicated with an ‘S’ (Sect. 2.1). Exposure models used to analyze the data either as single models

or as part of a subset of models are indicated with a ‘P’ (Sect. 2.2)
b The pharmacovigilance models included in each pharmacovigilance subset, (i)–(ix), are indicated in this column (Sect. 2.2)
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aforementioned 11 exposure–risk models. For an addi-

tional scenario (l) (Table 1), in which individual drug

exposure patterns and event times were matched at

random, implying no exposure–risk association, we

generated 10,000 cohorts. These cohorts were used to

calibrate the stopping-rule thresholds such that the false

positive rate was fixed throughout our analyses, as

described in Sect. 2.3.

Table 2 Detailed descriptions of the alternative time-varying flexible weighted cumulative effect models and model assuming no association

used to simulate or (re-)estimate data linking drug exposure with adverse events

Exposure

model

Exposures associated with hazard of

an adverse event on day t

Simulation

scenario (S) and/or

pharmacovigilance

model (P)a

Subsets containing each pharmacovigilance

modelb

(h) Delayed effect Historical exposures, with the effect

of exposures increasing, reaching a

peak at month 3, and then

decreasing over time

S –

(i) Decaying effect Current exposures, with the effect of

exposures decreasing over time

S –

(j) Decaying and

delayed effect

More recent exposures and certain

historical exposures

S –

(k) Dual effect The timing of historical exposures:

more recent exposures were

assumed to be harmful, while more

distant exposures were protective

S –

(m) Binary WCE The weight functions were flexibly

estimated over 180 days of use for

cohorts simulated using models

(a)–(j) and 540 days for cohorts

simulated using model (k)

P (ii) (iii) (iv) (vii) (viii)

(m.1) Binary WCE,

longer

estimation

period

The weight functions were flexibly

estimated over 365 days of use for

cohorts simulated using models

(a)–(j) and 2730 days of use for

cohorts simulated using model (k)

P (vii) (viii)

(m.2) Binary WCE,

estimation

period equal to

duration of

follow-up

The weight functions were flexibly

estimated over 1095 days of use

for all cohorts

P (vii) (viii)

(n) Continuous WCE The weight functions were flexibly

estimated over 180 days of dosages

for cohorts simulated using models

(a)–(j) and 540 days for cohorts

simulated using model (k)

P (ii) (iii) (v) (vii) (ix)

(n.1) Continuous

WCE, longer

estimation

period

The weight functions were flexibly

estimated over 365 days of dosages

for cohorts simulated using models

(a)–(j) and 730 days of dosages for

cohorts simulated using model (k)

P (vii) (ix)

(n.2) Continuous

WCE,

estimation

period equal to

duration of

follow-up

The weight functions were flexibly

estimated over 1095 days of

dosages for all cohorts

P (vii) (ix)

WCE weighted cumulative effect
a Exposure models used to simulate data are indicated with an ‘S’ (Sect. 2.1). Exposure models used to analyze the data either as single models

or as part of a subset of models are indicated with a ‘P’ (Sect. 2.2)
b The pharmacovigilance models included in each pharmacovigilance subset (i)–(ix) are indicated in this column (Sect. 2.2)

1122 R. D. Gaalen et al.



In the main simulations, we assumed random censoring,

no exposure misclassification, complete ascertainment of

AEs, and no confounding. Sensitivity analyses, outlined in

Sect. 2.5, assessed the impact of these assumptions.

2.2 Prospective Pharmacovigilance Models Used

to Analyze the Simulated Data

Prospective surveillance was conducted by repeating

analyses at up to 20 ‘testing times’, evenly spaced during

the 5 years of follow-up to mimic a 5-year pharmacovigi-

lance study with testing repeated every 3 months. While

analyzing the data simulated from a given ‘true’ exposure

model, we adopted a conservative assumption that the data

analysts do not know how the drug exposure affects the

risks and, thus, consider a wide range of potentially plau-

sible models. Accordingly, for each simulation scenario, at

each testing time, we estimated the same eight alternative

prospective pharmacovigilance models, each assuming a

different exposure–risk association (hereafter referred to as

the ‘pharmacovigilance model’). The pharmacovigilance

models included six simple models used to simulate data in

scenarios (a)–(f) (Table 1) and two flexible WCE models

[41], in which the weight function was assumed not to be

known and, thus, had to be estimated. Specifically, a ‘bi-

nary’ WCE model (m) ignored dosage and accounted only

for timing and duration of past exposures, whereas a

‘continuous’ WCE model (n) accounted for dosage, in

addition to timing and duration of exposure (Table 2). For

WCE models, the weights were estimated using cubic

regression B-splines with two interior knots and were

constrained to zero at the end of the exposure time window,

resulting in four degrees-of-freedom for the estimated

exposure effect [41]. The resulting estimated effect of the

exposure at any time t during follow-up was then the

weighted sum of exposure indicators (for the ‘binary’

model) or doses (for the ‘continuous’ model) until time t. It

should be noted that the two WCE models (m) and (n) did

not assume any specific weight function and, thus, there

was no one-to-one correspondence between these models

and the four WCE models (g)–(k) used for data generation,

each of which assumed a specific analytical weight func-

tion. Estimating an association using each of models (c),

(d), (m), and (n) (Tables 1, 2) required specifying the time

window over which past exposures were relevant for the

current hazard. While estimating these models in the

analyses, we first assumed that the time window was

specified correctly, i.e., that it was identical to the window

used to simulate the data for a given scenario. Then, in

additional re-analyses, we also estimated alternative ver-

sions of these models, assuming a time window either

longer or shorter than the true window used in data gen-

eration (Tables 1, 2).

At each testing time T ¼ 1; . . .; 20; each pharmacovig-

ilance model used all available data from the start of

surveillance until T. At each T, the hazard ratio (HR(T)) for

exposure was estimated using a Cox proportional hazards

model, and a likelihood ratio test statistic was used to test

the null hypothesis of no association: HR(T) = 1. In Fig-

ure 4 in Electronic Supplementary Material 1, we illustrate

the data structure. The corresponding p value for a given

model at time T and the estimated hazard ratio were

retained. Goodness-of-fit was assessed using the Akaike

Information Criterion (AIC) [7, 42].

We combined evidence from pharmacovigilance models

using the ‘lowest p value approach’ that generated a signal

if the lowest model-specific p value in a pharmacovigilance

subset was below the corresponding predetermined testing

threshold, with the corresponding HR[1. The latter con-

dition was imposed because typically pharmacovigilance

aims at detecting only risk increases.

In real-life pharmacovigilance studies, depending on

prior knowledge and clinical or pharmacological insights,

investigators may decide to use different sets of pharma-

covigilance models. Thus, we compared the results

obtained with nine alternative partly overlapping pharma-

covigilance subsets. The last column of Tables 1 and 2

indicates in which pharmacovigilance subsets a given

model was included. Detailed descriptions of the pharma-

covigilance subsets are given in Electronic Supplementary

Material 3.

2.3 Calculating the Predetermined Thresholds

To ensure a comparable risk of false positive signals (a),
e.g., a ¼ 0:05; the threshold used for ‘signal detection’

should correspond to the ð1� aÞ � 100th percentile of the

distribution of each respective test statistic and each

pharmacovigilance subset, expected when there was no

exposure-risk association (H0). In our case, it was evident

that using both (a) multiple testing times and (b) multiple

pharmacovigilance models would increase false positive

signals. However, the exact distribution of the test statistics

was difficult to estimate analytically, as it depended not

only on (a) the number of testing times and (b) the number

of pharmacovigilance models in a given pharmacovigi-

lance subset, but also on the correlations of both (c) the

results of the same model at different testing times and

(d) the results of different models, within a given phar-

macovigilance subset, at a given T. Therefore, we relied on

large-scale simulations to approximate the distribution of

the test statistic [30, 41, 43] expected under H0. These

simulations were performed separately for each pharma-

covigilance subset. In particular, we first simulated 10,000

cohorts, while assuming no association [model (l)], and

then combined the results using a specific
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pharmacovigilance subset (Sect. 2.2) applied to each sim-

ulated cohort. We then systematically increased the

threshold for the test statistics and, for each such potential

threshold, calculated the percentage of simulated cohorts in

which H0 was (incorrectly) rejected. This method allowed

us to empirically determine a corrected threshold for each

pharmacovigilance subset (Sect. 2.2), such that the corre-

sponding observed overall false positive rate was 5%. For

each pharmacovigilance subset, we observed that the dis-

tribution of p values and test statistics based on the 10,000

simulated cohorts remained relatively constant across all

testing times (e.g., Electronic Supplementary Material

5.1.4). Therefore, while analyzing the data simulated from

the models that assumed the ‘true’ association (Sect. 2.1), a

constant threshold was used across all testing times for

each pharmacovigilance subset.

2.4 Criteria to Compare the Performance

of the Alternative Pharmacovigilance Subsets

Each simulated sample was re-analyzed many times using

one of the pharmacovigilance subsets listed in Tables 1 and

2. Based on these results, for each of the eleven simulation

scenarios (a)–(k) (Tables 1 and 2), we assessed the impact

of selecting a specific pharmacovigilance subset. Specifi-

cally, we compared the time to signal detection of the

‘lowest p value approach’ across the nine pharmacovigi-

lance subsets. Accordingly, the signal detection time for a

given pharmacovigilance subset was the detection time of

the best-performing model within a particular pharma-

covigilance subset even if the best-performing model dif-

fered across the simulated samples. The resulting detection

times were also compared against the single ‘etiologically

correct’ pharmacovigilance model, used to generate the

data for a given simulation scenario, which represented the

(practically unrealistic) ideal approach. For each simula-

tion scenario (a)–(k), times to signal detection for each

pharmacovigilance subset were summarized using Kaplan–

Meier-like curves [30], which show the cumulative pro-

portion of simulated samples that generated a signal up to

and including a given testing interval.

In Electronic Supplementary Material 6, we provide

additional details on the results obtained with the ‘lowest

p value approach’, using, as an example, pharmacovigi-

lance subset (iii). These include descriptive statistics on the

frequency distribution of the signal-generating pharma-

covigilance models for each scenario, and the corre-

sponding hazard ratios at the time of signal detection.

2.5 Sensitivity Analyses

In addition to the ‘lowest p value approach’ presented in

Sect. 2.2, in Electronic Supplementary Material 5.1 we

compared the timeliness of signal detection between four

other approaches to pooling the p values of alternative

pharmacovigilance models [34, 37].

Moreover, to assess the sensitivity of our results to

assumptions made in conducting our main simulations, we

performed four analyses. In generating data for each of the

four sensitivity analyses we modified one of the following

factors: (1) the variation over time in exposure patterns was

decreased; (2) the incidence rate; (3) the presence of

unmeasured confounding (resulting in an under-estimation

of the HR for exposure) and the misclassification of

exposure due to different patterns of non-adherence; and

(4) the misclassification of the outcome, due to missing

information on some events. Electronic Supplementary

Material 5.2 presents the details of these analyses.

3 Results

The results from applying the ‘lowest p value approach’ to

six different simulation scenarios are presented in Fig. 1,

with additional results in Electronic Supplementary Mate-

rial 4 Figures 7 and 8. Among the nine pharmacovigilance

subsets (see Tables 1, 2 for composition of each pharma-

covigilance subset), the three pharmacovigilance subsets

(i), (iii), and (vi) performed consistently well for all ten

simulation scenarios where the true model generated a

harmful exposure effect for the entire exposure history,

implying that drug exposure (or higher drug dose) at any

time in the past (up to the current time) is always associ-

ated with risk increase (Tables 1, 2, models (a)–(j)). Each

of the three pharmacovigilance subsets contained the six

main parametric models (a)–(f). Pharmacovigilance subset

(i) was limited to these six models, whereas pharma-

covigilance subset (iii) also contained the two WCE

models (m) and (n), and pharmacovigilance subset (vi)

contained all ten parametric models but not the WCE

models.

Among these three best performing pharmacovigilance

subsets, the pharmacovigilance subset (iii) that included the

two WCE models, in addition to the six parametric models,

also performed well in detecting a ‘dual effect’ with

‘crossing hazards’, where the current risk increased with

recent drug exposures but decreased with exposures that

occurred in more distant past (more than 3 months ago)

(Table 2, scenario (k)). In contrast, pharmacovigilance

subsets (i) and (vi), which were limited to simple para-

metric models (Table 1), did not adequately detect this

complex effect, as reflected by a low cumulative sensitivity

(\20%) at the twentieth testing time (Electronic Supple-

mentary Material 4, Figure 8k).

Importantly, for all simulation scenarios, the median

time to detection of pharmacovigilance subset (iii)—

1124 R. D. Gaalen et al.
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(iv) 3 Binary parametric & binary WCE
(v) 3 Continuous parametric & continuous WCE

Fig. 1 Comparison of the times to signal detection generated by

alternative pharmacovigilance subsets with the ‘lowest p value

approach’. Each panel corresponds to a different simulation scenario,

with data generated from a different ‘true’ exposure model. The

horizontal axis represents the time T (quantified by consecutive

testing intervals) and the vertical axis shows the proportion of

simulated samples in which the signal was detected by time T using a

specific pharmacovigilance model/subset (with different models/sub-

sets identified by different colors). For example, in b the signal was

detected in 62% of samples by the sixth testing interval using subset

(ii) (red curve). In each panel, the solid black line represents the

pharmacovigilance model that would provide a correct interpretation

of the underlying association. In b, e, and f, this line represents the

pharmacovigilance model that is identical to the model used to

simulate the data. In h, i, and k, this line represents a flexible

weighted cumulative effect model that accounted for dosage. All

other ‘incorrect pharmacovigilance models’ are depicted using a solid

gray line. WCE weighted cumulative effect
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indicated as the testing interval where the solid green line

reaches the cumulative sensitivity of 0.5—was either

shorter [scenario (k)] than or equivalent to the better of

pharmacovigilance subsets (i) and (vi), or—on rare occa-

sions—longer by at most only one testing interval (Elec-

tronic Supplementary Material 4, Figures 7 and 8).

Although pharmacovigilance subset (iii) sometimes did not

provide the timeliest detection among the nine pharma-

covigilance subsets (e.g., Fig. 1e), in such (rare) cases, the

difference in time to detection between the optimal phar-

macovigilance subset and pharmacovigilance subset (iii)

was only minor.

As expected, for scenarios simulated using a parametric

model [scenarios (a)–(g)], none of the pharmacovigilance

subsets performed better than the ideal (though unrealistic)

approach that relied on the single ‘correct pharmacovigi-

lance model’, which corresponded exactly to the true data-

generating model (Fig. 1 and Electronic Supplementary

Material 4, Figures 7 and 8, solid black line). For more

complex models of completely harmful effects, the correct

a priori model—the continuous WCE model—required

more time, on average, to detect an association than the

parametric model that most closely resembled the under-

lying complex association. The additional degrees of

freedom (df) associated with WCE models results in an

additional penalty for the model’s complexity, which

decreases the power of the test of association [7] such that

the 1 df simple, parametric model that closely resembles

the complex ‘true’ association was a more timely indicator

of the presence of an association (Fig. 1h, i). For example,

for the current dose scenario (b), the timeliest signal

detection was obtained using the current dose model (b);

for the delayed effect scenario (h), the timeliest signal

detection was obtained using the model where the relevant

exposure was the cumulative dose in the past 30 days

[model (d)].

Our results in Fig. 1 suggest that, if the true model is not

known, an association can be detected in a more timely

manner by fitting a subset (iii) of pharmacovigilance

models. The set of models included alternative parametric

and flexible models with different assumptions about the

underlying exposure–risk association.

In our sensitivity analyses, we compared the times to

detection between the ‘lowest p value approach’ and four

alternative approaches for combining evidence from mul-

tiple pharmacovigilance models for each of the 11 simu-

lation scenarios and each of the nine model

pharmacovigilance subsets. Figures 9 and 10 in Electronic

Supplementary Material 5.1.3 illustrate these results for

pharmacovigilance subset (iii). Our results suggest that

more sophisticated approaches to pooling evidence from

multiple pharmacovigilance models do not significantly

improve the timeliness of signal detection compared with

the simple ‘lowest p value approach’. Further sensitivity

analyses confirmed findings of our main simulations:

among the alternative approaches, the ‘lowest p value

approach’ consistently offered the fastest signal detection

and highest sensitivity of signal detection by the last testing

interval. Our analyses suggested that the original thresholds

may be conservative when (1) exposure patterns were

stable relative to the cohorts used in the original analysis;

(2) the incidence rate was higher than in the original sim-

ulations; or (3) there was a combination of unmeasured

confounding, resulting in an under-estimation of the true

HR for the exposure, and misclassification of exposure due

to different patterns of non-adherence. In contrast, when

information on some events was missing, false positive

rates tended to be slightly higher. Among the four modi-

fications of data structure, the most significant detection

delays were observed in the presence of unmeasured con-

founding resulting in an under-estimation of the true HR

for the exposure, combined with misclassification of

exposure due to different patterns of non-adherence. Full

results of these sensitivity analyses are presented in Elec-

tronic Supplementary Material 5.2.

4 Discussion

In this article, we used simulation to investigate the

potential benefits of combining results of multiple expo-

sure–risk models. We hypothesized that simultaneously

using the results of several exposure models could offer

more timely detection, relative to an arbitrarily selected

model selected a priori. Accordingly, we combined evi-

dence from multiple exposure models applied to the same

simulated data, and compared the resulting times to signal

detection. To conduct this analysis, we simulated various

plausible patterns of association between time-varying

drug use and the hazard of an AE. We then analyzed the

simulated data assuming that, as in most real-life

prospective surveillance studies, the ‘true’ data-generating

exposure–risk model is unknown. We compared the

resulting times to signal detection under a range of simu-

lated, clinically plausible associations between a time-

varying drug exposure and the hazard of an AE. We

thereby demonstrated the impact of methodological choi-

ces in modeling drug exposure on the timeliness of signal

detection in pharmacovigilance [30].

Consistent with our expectations, the ‘lowest p value

approach’, which considered evidence from multiple

models, detected signals of association at a time compa-

rable to an unrealistic ‘ideal case’ scenario, where only the

single ‘correct’ pharmacovigilance model, corresponding

to the ‘true’ model used to simulate the data, was

employed. Conversely, combining results of alternative
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models improved both the timeliness and the sensitivity of

AE detection at a fixed specificity as compared to standard

current pharmacovigilance practice, where a single model

is selected arbitrarily a priori and used to assess the puta-

tive association [44–49]. The additional computational

burden, required to estimate several alternative models and

combine their results, appears to be justifiable as it com-

pensates for uncertainty about the true exposure–risk

model. The ‘lowest p value approach’ generates a signal

when the p value of at least one of the pharmacovigilance

models considered in the analyses falls below a certain

predetermined corrected threshold. The p value threshold

was derived through simulations [43, 50] and corrected for

false positive rate inflation due to both testing repeated

over time and the use of multiple exposure models to

ensure an overall false positive rate of about 5%.

Overall, our results indicate that, in situations when the

‘true’ model, which specifies how past and current drug

exposures affect the risk of a particular AE, is not known,

signal detection is more timely when using a pharma-

covigilance subset based on distinct yet plausible

assumptions than when using any single model. As shown

in Fig. 1, the best overall results were obtained with the

pharmacovigilance subset (iii) that included alternative

plausible models that assumed different exposure–risk

associations and flexible WCE models that made no

assumptions regarding the form/shape of the association.

The results of our sensitivity analyses provide reasonable

assurances that, in most situations, the actual false positive

rate is likely to be equal to or lower than the prespecified

nominal rate for which the threshold was set.

Our study has several limitations. First, our simulation

scenarios considered only a selection of the models that may

represent the true relationships between different drug

exposures and various AEs, although we sought to include a

representative set of clinically plausible associations of

interest. Second, our simulations only allowed us to compare

the relative performance of alternative approaches, in terms

of faster or slower times to signal detection. They do not

allow us to predict the actual magnitude of absolute time

reduction in specific real-life situations, as the time to

detection will depend on such factors as the amount of

available data (e.g., the sample size, prevalence, and time-

varying patterns of use of the drug of interest and the out-

come rate, which will determine the number of events),

frequency of testing times, variability in drug use, and con-

founders adjusted for in the analysis. Third, we somewhat

arbitrarily selected the ‘target’ false positive rate of 5%,

chose our threshold for signal detection to be constant over

time, and pre-set the number of testing intervals. However,

we showed that the thresholds we generated are robust to

changes in exposure patterns, the incidence rate, and out-

comemisclassification, suggesting that these thresholds may

produce similar false positive rates in future studies of dif-

ferent drug exposures and/or different AEs. Future work is

needed, however, to characterize more precisely the range of

conditions under which the thresholds generated in the pre-

sent study remain valid. In situations where a different set of

models may be required, and/or where the sample size and

study design diverge substantially from those considered in

our simulations, it might be preferable to conduct ‘cus-

tomized’ simulations and derive new thresholds based on the

results. In such situations the ‘generic’ methods described in

Sect. 2.3 of our article may be useful.

Importantly, methods to pool p values that we considered

in this paper have traditionally been used to combine infor-

mation from multiple genes [36, 51–53] or multiple trials

focusing on the same intervention [37]. In such previous

applications, each p value was derived from a different

information-generating source (e.g., different genetic

markers, genes, DNA segments, or independently conducted

trials). This is not the case when alternative pharmacovigi-

lance models are used to assess a single relationship using

exactly the same data, which implies that the amount of

additional information gained by pooling results of different

analyses may be lower. However, we believe it is important

to provide solid empirical evidence for assessing the relative

advantages of different approaches to pooling results of

alternative pharmacovigilance models. The fact that a sim-

ple, easy-to-implement ‘lowest p value approach’ performed

the best across a range of simulation scenarios adds to the

practical relevance of our findings.

5 Conclusions

Prospective pharmacovigilance aims to detect safety con-

cerns related to medical products in a timely manner. Taken

together, our results suggest that, in typical applications

where the ‘true’ exposure–risk model is unknown a priori,

an effect can be detected in a more timely manner using a

carefully selected set of pharmacovigilance models and a

simple approach to combining their results. Specifically, the

approach we recommend requires first fitting the selected

set of alternative pharmacovigilance models and then

relying on the model that generates the earliest signal, while

using a simulation-corrected p value cut-off that ensures

adequate control of the overall false positive rate. Our

results suggest that an optimal pharmacovigilance subset

should include (a) both dose-dependent models and models

that ignore the dosage; (b) models of varying durations of

effect; and (c) both parametric and flexible WCE models

[41, 54–56]. Implementation of this approach in real-life

pharmacovigilance will provide additional insights into its

potential practical advantages and limitations, and will

likely stimulate further method developments.
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