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Martingale residual-based method to
control for confounders measured
only in a validation sample in
time-to-event analysis
Rebecca M. Burne and Michal Abrahamowicz*†

Unmeasured confounding remains an important problem in observational studies, including pharmacoepidemi-
ological studies of large administrative databases. Several recently developed methods utilize smaller validation
samples, with information on additional confounders, to control for confounders unmeasured in the main, larger
database. However, up-to-date applications of these methods to survival analyses seem to be limited to propensity
score calibration, which relies on a strong surrogacy assumption. We propose a new method, specifically designed
for time-to-event analyses, which uses martingale residuals, in addition to measured covariates, to enhance impu-
tation of the unmeasured confounders in the main database. The method is applicable for analyses with both
time-invariant data and time-varying exposure/confounders. In simulations, our method consistently eliminated
bias because of unmeasured confounding, regardless of surrogacy violation and other relevant design parame-
ters, and almost always yielded lower mean squared errors than other methods applicable for survival analyses,
outperforming propensity score calibration in several scenarios. We apply the method to a real-life pharma-
coepidemiological database study of the association between glucocorticoid therapy and risk of type II diabetes
mellitus in patients with rheumatoid arthritis, with additional potential confounders available in an external val-
idation sample. Compared with conventional analyses, which adjust only for confounders measured in the main
database, our estimates suggest a considerably weaker association. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

In observational studies, and particularly in post-marketing studies of drug safety, often the best source
of sufficiently large data is found in administrative databases [1,2]. These large databases, although they
have sufficient power to detect clinically important but rare adverse events, often have limited or no infor-
mation on some important confounders, for example, lifestyle characteristics such as body mass index
(BMI) and smoking, measures of disease severity, and laboratory tests [3]. Lack of information on such
confounders can lead to important biases, and may suggest associations where there are none [4]. Thus,
development of new statistical methods, which can eliminate or reduce biases because of unmeasured
confounding that is imperative [5].

One possible solution to this problem may involve the use of smaller datasets with more detailed con-
founder information, which we will refer to as validation samples. Such a dataset could be a subset of the
large database selected for further measurements, or could be external to the large database, arising from
a different source population with similar clinical characteristics. In the context of pharmacoepidemio-
logical studies, the validation sample may represent a relatively small subset of subjects enrolled in a
clinical research study and individually evaluated by study investigators, or a clinical dataset or registry
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collected externally in order to monitor a particular disease or drug [6–8]. Recently developed meth-
ods that use the validation sample to adjust for confounders unmeasured in large main databases include
propensity score calibration [7], BayesPS [9], and two-stage calibration [10].

Propensity score calibration (PSC) accounts for unmeasured confounding by adapting regression cal-
ibration to propensity score analysis [7]. The method involves calculation of (i) the ‘gold standard’
propensity score, which adjusts for all confounders available within the validation sample and (ii) an
‘error-prone’ propensity score, which adjusts for only those confounders measured in the main database.
It uses the relationship between these two scores to impute a corrected propensity score value in the main
database that is then used as an adjustment or matching variable in the final analysis of the drug-outcome
association. The performance of PSC, however, depends strongly on an assumption of surrogacy, which
requires that the error-prone propensity score is conditionally independent of the outcome given in the
gold standard propensity score [7]. It has been shown that PSC eliminates unmeasured confounding bias
if surrogacy is met, but can perform quite poorly if this assumption is violated [11].

BayesPS addresses the same problem using a Bayesian paradigm, together with propensity scores [9].
In contrast to PSC, BayesPS does not depend on the assumption of surrogacy and performs much better
than PSC in simulations where surrogacy is violated [9]. However, it was developed for a binary outcome
and has not been extended to time-to-event analysis [9]. Thus, this method cannot be directly applied
in many pharmacoepidemiological studies, which typically rely on a prospective or retrospective cohort
design for which time-to-event analysis is most appropriate.

Two-stage calibration is a method developed recently by Lin and Chen (2014) [10]. It uses propensity
scores as confounder summaries in both validation and main datasets, and then uses the approach of
Chen and Chen (2000) to correct the regression estimate for the exposure obtained from the validation
sample [12].

Use of validation samples may help in addressing the problem of unmeasured confounding in many
observational database studies of drug safety or effectiveness. However, such applications require the
development and validation of methods that allow for an accurate use of validation samples in time-to-
event analyses of cohort studies. To address this challenge, we propose and validate a new method of
adjusting for unmeasured confounders in time-to-event analysis, using additional confounder information
available in a validation sample. To the best of our knowledge, no such methods, which attempt to adjust
for unmeasured confounding using validation samples, have previously been suggested specifically for
survival analysis. It should be noticed that while the problem of unmeasured confounders with a validation
sample appears similar to the problem of missing data, in administrative databases the confounders of
interest are not recorded for any subjects, so that missingness depends only on the mechanism which
determines who is included in the validation sample. Thus, in our context, the pertinent question is how
the characteristics of the subjects included in the validation sample relate to the full cohort of the eligible
study participants included in the large main database. Similar to existing methods for using validation
sample data, summarized earlier, we initially develop our method assuming that the validation sample is
a random sample of the main database. In the terminology used in the missing data literature, this would
correspond to the missing completely at random (MCAR) assumption [13]. Then, in sensitivity analyses,
we consider cases where inclusion in the validation sample does depend on values of (i) the measured
confounders (missing at random (MAR)) or (ii) the unmeasured confounders (missing not at random
(MNAR)). We also discuss the case where the validation sample is external that arises from a different
population, possibly with a different event rate.

Section 2 describes the motivation for the method and its implementation. In Section 3, we present a
simulation study to assess the performance of the proposed method in several scenarios and compare it
with alternative methods applicable in survival analysis. Section 4 illustrates an application of our method
to account for unmeasured confounding of the relationship between glucocorticoid therapy and type II
diabetes mellitus (DM) in a large cohort of rheumatoid arthritis (RA) patients. The paper is concluded
with a discussion.

2. Methods: martingale residual-based imputation

2.1. Motivation

We propose a method for imputing confounders unmeasured in the main database in time-to-event anal-
yses using a validation sample with complete confounder information. Our method involves the use of
martingale residuals in imputation models for the unmeasured confounders. The martingale residual was
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originally proposed in time-to-event analysis for the purpose of model assumption checking [14], and
can be thought of as a measure of the ‘excess’ events observed over what is predicted by the fitted model.
Following Barlow and Prentice (1988) [14] and Therneau et al. (1990) [15], the martingale residual for
individual i at time t is defined as

M̂i(t) = Ni(t) − ∫
t

0
Yi(s) exp

{
𝜷′𝐙i(s)

}
dΛ̂0(s), (1)

where Yi(s) is an indicator function denoting whether individual i is at risk at time s ⩽ t, Ni(t) is a counting
process for the observed events by individual i at time t (Ni(t) = 0 until individual i has an event, after
which time Ni(t) = 1), Λ̂0(s) is the Breslow estimate of the cumulative hazard [16], and 𝐙i(s) is the vector
of possibly time-dependent covariates for individual i at time s.

The rationale behind using the martingale residual to impute unmeasured confounders has two com-
ponents. Firstly, including information on the outcome in the imputation model, in addition to data on
measured covariates or predictors, yields less biased final regression coefficients [13, 17]. However, in
the setting of survival analysis, the event times are not directly observed for some subjects, and thus,
outcomes are comprised of both (i) observed time and (ii) censoring status. The martingale residual in
(1) combines information on both components of the outcome, and, in addition, accounts for the effects
of all measured covariates including the exposure of primary interest. Thus, inclusion of the martingale
residual in the imputation model accounts for the individual subjects’ outcomes and may improve the
imputation. Secondly, the martingale residual may partly explain those outcomes that appear unlikely
given the observed covariates, and thus may indicate presence of unmeasured confounding. Consider,
for example, an important unmeasured continuous risk factor U, with hazard increasing with increasing
U. Subjects who had an early event may be expected to have, on average, a high value of U. The mar-
tingale residual quantifies the ‘excess’ events experienced by an individual at time t, and is bounded by
−∞ and 1. A value close to 1 indicates that an individual experienced an event when their predicted risk
from the model that accounted only for measured covariates was low. Thus, this individual has ‘excess
risk’ that is not well explained by the measured covariates and could possibly be explained by an unob-
served high value of U. In contrast, a highly negative value of martingale residual would indicate that
the model predicts a high risk, while the individual has not yet had an event. Because it would appear
that the model predicts a higher risk than the individual’s true risk, it is probable that the value for U is
low. In the Appendix, we provide a more formal rationale for the use of the martingale residuals in the
imputation model.

2.2. Implementation

2.2.1. Non-time-varying data and internal validation sample. In this section, we present the data
set-up and implementation in the case of an internal validation sample and analyses restricted to time-
invariant variables. Denote the full data (main database which includes the internal validation sample)
as {ti, 𝛿i,Xi,𝐂i,𝐔i}, for i = 1,… ,N. Let (ti, 𝛿i) denote the time and censoring indicator for each indi-
vidual, Xi their (binary) exposure, 𝐂i = (C1i,… ,Cpi) the vector of fully observed confounders, and
𝐔i = (U1i,… ,Uki) the confounders measured only in the validation sample (which we will refer to as
‘unmeasured’). Suppose that for those individuals in the main database with subscripts i = 1,… , n,
the confounders U1i,… ,Uki are missing. For the m individuals in the validation sample (with subscripts
i = n + 1,… ,N = n + m) these U1i,… ,Uki are measured, as well as 𝐂i.

The implementation of the proposed method includes the following four steps:

Step 1: Fit a Cox proportional hazards (PH) model to the full data, using data on only exposure X and
measured confounders 𝐂:

𝜆(t) = 𝜆0(t) exp
{
𝛾1X + 𝜸′2𝐂

}
. (2)

From this fitted model, obtain the martingale residual M̂i for i = 1,… ,N.
Step 2: The martingale residual is then used in the imputation models for the unmeasured confounders.

In the validation sample, where information on the unmeasured confounders U1i,… ,Uki is
available, fit the separate ‘training’ models for the imputation step for each U1,… ,Uk.

2.1: If Uj is continuous, in the validation sample fit a multivariable linear regression model dependent
on exposure, the martingale residual, and all measured confounders
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E
[
g
(
Uj

)]
= 𝛼0 + 𝛼1X + 𝛼2M̂ + 𝜶′

3𝐂, (3)

where g(.) is the identity function if Uj has an approximately Normal distribution (determined by,
for example, p ⩾ 0.05 for a Wilks–Shapiro test), and some reasonable transformation such as the
log function otherwise.

2.2: If Uj is binary, in the validation sample fit a multivariable logistic regression model:

logit
[
P
(
Uj = 1

)]
= 𝛼0 + 𝛼1X + 𝛼2M̂ + 𝜶′

3𝐂. (4)

Step 3: Then, based on the models estimated in Step 2, impute the missing confounder in the
main database:

3.1: If Uj is continuous, impute g(Uij) for each i = 1,… , n from a normal distribution with mean
E
[
g
(
Uij

)]
=

(
𝛼̂0, 𝛼̂1, 𝛼̂2, 𝜶̂3

)
𝐙′

i obtained from the fitted model in (3), and variance Vi =
𝜎̂2𝐳𝐢(Z′Z)−1𝐳′𝐢 , the prediction variance, where 𝐳i =

(
1,Xi,𝐂i, M̂i

)
is individual i’s vector of covari-

ates, and 𝐙 =
(
𝐳′n+1,… 𝐳′N

)′
is the design matrix of covariates from individuals in the validation

sample. In this way, uncertainty in the estimates from model (3), which depends on the size of
the validation sample, is taken into account. Then, if g(Uij) ≠ Uij, back-transform using g−1(⋅) to
obtain imputed Uj on the original scale.

3.2: For binary Uj, impute Uij for i = 1,… , n from a Bernoulli distribution with pi = P(Uij = 1) =
expit

{
𝛼̂0 + 𝛼̂1Xi + 𝛼̂2M̂i + 𝜶̂′

3𝐂i

}
from (4).

It is possible to multiply impute each Uj from fitted model (3) or (4) in order to incorporate
uncertainty in the imputation. We examine the influence of multiple imputation on coverage rates
of confidence intervals (CIs) in simulations (Section 3.1).

Step 4: Once these confounders have been imputed for i = 1,… , n in the main database, fit the final
Cox PH model to all subjects i = 1,… ,N

𝜆(t) = 𝜆0(t) exp
{
𝛽X + 𝜸′1𝐂 + 𝜸′2𝐔

}
, (5)

to estimate the exposure effect 𝛽, adjusted for both measured confounders and imputed values of
unmeasured confounders.

2.2.2. Time-varying data and external validation samples. Implementation of our method, described
earlier for time-invariant data, extends easily to analyses where both confounders and exposure are time-
varying, but such an extension requires some key assumptions about the data generation process. Here,
we assume that time-varying confounders are not affected by the past exposure, or unmeasured determi-
nant(s) of exposure, and thus, do not act as time-varying mediators of the exposure effect on the outcome
[18]. Under this assumption, the treatment effect could be accurately estimated, if all confounders were
fully measured, by fitting the ‘true’ model that simply adjusts for all relevant confounders

𝜆(t) = 𝜆0(t) exp
{
𝛽X(t) + 𝜸′1𝐂(t) + 𝜸′2𝐔(t)

}
. (6)

We also assume that only current values of the confounders, observed at time t, affect (i) the current hazard
at t, i.e. that the event of interest is acute in nature, and (ii) current exposure (treatment assignment). The
aforementioned assumptions about the data-generating processed are summarized in the directed acyclic
graph in Figure 1.

Figure 1. Directed acyclic graph (DAG) showing the assumed data-generating process for time-varying data.
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The implementation in the time-varying case proceeds along similar steps to the time-invariant case.
First, the martingale residual Mi(t) is estimated for each follow-up time t for each individual from the
Cox PH model:

𝜆(t) = 𝜆0(t) exp
{
𝛾1X(t) + 𝜸′2𝐂(t)

}
. (7)

Then, each time-dependent confounder Uj(t), j = 1,… , k, is imputed using time-varying analogs to
Equation (3) or (4) for, respectively, continuous and binary confounders: E

[
g
(
Uj(t)

)]
= 𝛼0 + 𝛼1X(t) +

𝛼2M̂(t)+𝜶′
3𝐂(t), or logit

[
P
(
Uj(t) = 1

)]
= 𝛼0+𝛼1X(t)+𝛼2M̂(t)+𝜶′

3𝐂(t). Note that we are implicitly mak-
ing the assumption that only current values, observed at time t, of the exposure, measured confounders,
and martingale residual are informative about the concurrent value of the unmeasured confounder Uj(t).

While above we assume that the validation sample is considered a random sample of the main database,
we also consider cases where the validation sample is external to the main database. One slight mod-
ification is necessary for applications where the validation sample is external, that is, obtained from a
separate database rather than being a random sample from the main database. In this case, in Step 1, the
martingale residuals are obtained separately for the validation sample and the main database, with iden-
tical models (Equation (2) or (7)) estimated, independently of each other, in each dataset. The training
and imputation steps (Steps 2 and 3) proceed as described in the previous section, but the final model
(Step 4) is run in the main database only (excluding the validation sample).

3. Simulations

To evaluate our method’s performance, we simulated a hypothetical prospective study designed to assess
the risk of an adverse event due to exposure to a drug, assuming some confounders unmeasured in the
main database are available in a validation sample. We first assessed the method, and compared it with
existing methods applicable for time-to-event analyses, in the case where both the exposure and covariates
were time-fixed. In this simulation study, we varied several parameters: the true effect of drug exposure;
the strength and direction of unmeasured confounding, including variation of whether and to what extent
the surrogacy assumption was violated; the censoring mechanism; the size of the validation sample; the
mechanism of inclusion into the validation sample; and the event rate in the validation sample (in the case
of an external validation sample). Then, we further assessed the method assuming both exposure and con-
founders were time-varying, and an external validation sample, while altering the strength and direction
of unmeasured confounding across the simulated scenarios. All simulations were run using r software
[19]. Simulation code is available on GitHub (http://github.com/RMBurne/MR-based-imputation).

3.1. Time-fixed covariates

3.1.1. Data generation. In simulations, we assumed two continuous measured confounders 𝐂𝐢 =(
C1i,C2i

)
and two unmeasured confounders 𝐔𝐢 =

(
U1i,U2i

)
, where U1i was continuous and U2i binary.

For most simulations (except select scenarios described later) the four confounders were assumed to be
independent of each other, and the validation sample and main database were simulated identically, thus
assuming that the validation sample is a random subset of the main database.

For i = 1,… ,N = 10, 000, we generated {C1i,C2i,U1i,U2i} where each of C1i,C2i,U1i ∼ N(0, 1), and
U2i ∼ Bern(p). Binary exposure Xi was generated for each individual from a Bernoulli distribution with
probability conditional on both observed and unobserved confounders, assuming a logistic model

P(Xi = 1) = expit
{
𝜉0 + 𝝃′1𝐂i + 𝝃′2𝐔i

}
. (8)

Using the method of inversion [20], the true event time for each individual, ti, was generated condi-
tional on simulated exposure and confounders from the a priori specified Cox PH model (Equation (5)),
assuming an underlying exponential event rate with a constant hazard.

Because the value of the martingale residual depends in part on the censoring mechanism, both
administrative and random censoring were presumed in different simulation scenarios. In the basic sce-
nario, administrative censoring was implemented such that 10% of subjects were observed to have the
(uncensored) event. For these scenarios with only administrative censoring at the end of the study,
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all subjects whose event times fell after the 10th percentile were censored at that time. For scenarios
where a combination of random and administrative censoring was assumed, first censoring times were
generated from an exponential distribution, and then an administrative cut-off was taken as the 10th per-
centile of the observed event times. Further scenarios were assumed with only random censoring. In the
first, both the underlying hazard and censoring mechanism were assumed to be exponentially distributed;
and in the second, they were assumed to be Weibull, in such a way that censoring was around 40%.

The main simulations, described earlier, rely on the assumption that the validation sample is a random
sample of the main database, which corresponds to the assumption of MCAR in the missing data literature
[13]. Whereas similar assumptions underlie PSC and other methods relevant for our setting, insofar as
the validation sample is required to be comparable with [7] or ‘exchangeable’ with [9] the main sample,
in some real-life applications this may not be the case. Therefore, in sensitivity analyses, we assessed the
performance of the methods in two more complex situations where inclusion into the validation sample
may depend on the values of, respectively, (i) covariates measured in the main database (𝐂) and (ii)
values of unmeasured confounders (𝐔). For case (i), we assumed that probability of inclusion into the
validation sample increased with increasing values of the continuous variable C1, so that the distribution
of this confounder was shifted toward higher values in the validation sample compared with the main
database. We also assumed that there was some correlation between C1 and one unmeasured confounder,
U2, as we believe that this is a plausible scenario, and it may make it more difficult to obtain unbiased
estimates. For case (ii), we assumed that the probability of inclusion into the validation sample increased
with increasing values of the continuous unmeasured confounder U1. Finally, we have added a further
simulation scenario, in which the event rate in the validation sample is twice that of the main database,
which may occur if subjects for whom additional confounders are measured were included in a hospital-
based clinical study and, thus, represent a high-risk subpopulation.

Once this full data was generated, a random sample of size m was taken for the validation sample, and
then {U1i,U2i} were deleted for the remaining i = 1,… , n = N−m. With this data set-up, the imputation
and analysis proceeded as described in Section 2.2.

Details and values of all parameters used in different scenarios can be found in Appendix A of the
Supporting Information.

3.1.2. Analysis of simulated datasets. For each simulation scenario, we generated and analyzed 1000
independent datasets, and compared our method with three alternative methods. Firstly, we fit the con-
ventional Cox PH model, which we will refer to as ‘standard’ adjustment, which adjusted only for the
confounders measured in the main database. As the second method, we implemented PSC as described by
Stürmer et al. (2005) for Cox regression analysis [7]. The aforementioned methods were also compared
with a method which incorporated outcome information in the imputation model through inclusion of
two additional terms: the log survival time and the event indicator. A similar method has previously been
used in studies comparing multiple imputation methods for survival data [21, 22]. Comparison with this
method enables us to examine the potential advantages of representing the information on the individual
subjects’ outcomes by a single value given by the martingale residual rather than by two separate variables
for (i) the censoring indicator and (ii) the follow-up time. The results of our martingale residual-based
imputation and the three alternative methods were compared with respect to bias, standard deviation (SD),
and root mean square error (RMSE) of the estimated effect (adjusted log hazard ratio) of the exposure.

3.1.3. Coverage rate of the martingale residual-based imputation estimate. Because the SD of the esti-
mate in our model (5) does not take into account the variation arising from the estimation of the martingale
residual and imputation of the unmeasured confounders, the naïve CI based on the covariance matrix of
model (5) is likely to underestimate the true sampling variance. We therefore investigated if adequate
coverage can be achieved by either of two alternative approaches: (i) multiple martingale residual-based
imputation or (ii) bootstrap.

First, to assess whether multiple imputation of the confounders using martingale residual-based impu-
tation would improve the accuracy of the variance estimation and coverage, we repeated the imputation
and further steps 10 times for each simulated sample. Standard errors and CIs were obtained using
standard multiple imputation rules [23].

The second approach involved bootstrap resampling. Because of the computational burden of com-
bining bootstrap with simulations, we performed bootstrapping for only six scenarios and limited it to
500 simulated datasets for each scenario. All four steps of martingale residual-based imputation were

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4588–4606

4593



R. M. BURNE AND M. ABRAHAMOWICZ

replicated in each resampled dataset. Three hundred bootstrap samples were used for each scenario, and
the coverage of the 95% bootstrap CI, estimated through the percentile method, was calculated [24].

3.1.4. Simulation results. The results of simulations are summarized in Table I. Our martingale residual-
based method performs better in terms of bias than standard analysis, for all simulation scenarios. Our
estimates are uniformly unbiased regardless of the true HR (scenarios 1–3), strength of unmeasured
confounding (scenarios 4 and 5), and violation of surrogacy (scenarios 6–11). Neither reduction of the
validation sample size, with as few as 50 or 25 observed events (scenarios 12–15), nor a combination
of administrative and random censoring (scenario 19) appear to affect the bias of the estimates obtained
with martingale residual-based imputation, although our method displays a small increase in bias relative
to the baseline scenario 1 in fully random censoring scenarios (scenarios 20 and 21).

For both scenarios 16 and 17, when selection into the validation sample depends on, respectively, a
measured and an unmeasured confounder, there is no notable change in performance from the baseline
scenario 1 for any method (Table I). Similarly, when the validation sample was assumed to represent a
high-risk subpopulation, with event rate double that of the main database, the bias of each method is not
substantially different from the baseline scenario (Table I, scenario 18). Regardless of the specific reasons
for the violation of the MCAR assumption, and their possible impact on the accuracy of the estimates, in
all scenarios 16–18 the martingale residual-based imputation performed better than or at least as well as
all other methods (Table I).

In most scenarios, martingale residual-based imputation performs almost identically to imputation
including the log survival time and censoring, except in scenarios with completely random censoring and
with different underlying hazard distributions, where the bias of log(t) imputation was 64-75% larger
(scenarios 20 and 21). As expected, the bias of PSC estimates depends on whether and to what extent the
surrogacy assumption is violated. When surrogacy holds (scenarios 1–5), PSC yields almost unbiased
estimates and performs better than standard adjustment. However, when surrogacy is even moderately
violated, the PSC estimates are seriously biased and may even yield more biased estimates than standard
adjustment (e.g., scenarios 6, 7, 13, and 15). In contrast, the martingale residual-based imputation esti-
mates are unbiased even when surrogacy is seriously violated. Furthermore, martingale residual-based
estimates are slightly less biased than PSC estimates even when surrogacy holds (scenarios 1–5).

Table I also shows the ratios of (i) SD and (ii) RMSE, relative to martingale residual-based imputation,
for the three other methods: standard adjustment, PSC, and log(t) imputation. In all scenarios, SDs of
the martingale residual-based method are comparable with SDs of log(t) imputation (relative SD 0.99–
1.04 for all scenarios). Similarly, for most simulation scenarios, martingale residual-based imputation
SDs are similar to those for PSC. However, PSC has larger SD than martingale residual-based imputation
in cases where (i) the validation sample was smaller (scenario 14, relative SD 1.42; and 15, relative
SD 1.48), (ii) the validation sample was external (scenario 18; relative SD 1.24), and (iii) more random
censoring occurred (scenario 20, relative SD 1.44; and 21, relative SD 1.49). Our method has larger
variation than standard analysis in all scenarios, with particularly important variance inflation as the size
of the validation sample decreases (scenarios 14 and 15).

Despite some variance inflation, the proposed martingale residual-based imputation method offers bet-
ter bias/variance trade-off than PSC and standard analysis. Indeed, for almost all scenarios, our method
yields lowest RMSE compared with these two methods, often lower by more than 50% (e.g., scenarios
4, 6, 7, and 11). In a single scenario, scenario 8, both PSC and standard analysis have slightly lower
RMSE than our method, by <10%. This occurs mostly because of a combination of (i) inflation of the SD
of our estimates, discussed earlier, and (ii) very weak unmeasured confounding, which implies minimal
bias of the estimates obtained with all methods (Table I). For the same reasons, in scenarios with only
weak to moderate unmeasured confounding, our method does not work notably better than either stan-
dard adjustment or PSC (scenarios 5 and 9). In comparison with log(t) imputation, our method performs
similarly in terms of RMSE (relative RMSE 0.99–1.05), except in the case of random censoring, where
log(t) imputation has 12–13% higher RMSE because of its higher bias (scenarios 20 and 21).

Coverage rates of the bootstrap CIs for the martingale residual-based estimates are presented in
Table II. Because of the computational intensity of bootstrap for all simulation replications, only six sim-
ulation scenarios are presented. As expected, the coverage of the conventional covariance matrix-based
95% CI for single martingale residual-based imputation is consistently low for all scenarios, despite of the
absence of bias. Multiple martingale residual-based imputation with 10 imputations improves the cover-
age in all scenarios only slightly and is not sufficient to increase coverage to the nominal 95% level. In
contrast, the bootstrap, with CI based on the percentiles of the distribution of the estimates across the 300
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Table II. Coverage results of the 95% confidence interval for
selected scenarios, from our method (MR-based imputation), mul-
tiple imputation using our method with 10 imputations (multiple
MR-based imputation), and using bootstrap.

MR-based Multiple MR-based
Bootstrapimputation imputation

Bias Cover (%) Bias Cover (%) Bias Cover (%)

1 0.006 89.1 0.006 90.2 0.006 94.6
2 0.005 87.5 0.005 88.8 0.008 94.6
3 0.001 88.7 0.000 90.1 0.006 95.6
4 0.019 85.1 0.019 86.6 0.018 94.8
5 0.002 94.2 0.002 94.1 0.002 96.4
6 0.004 90.0 0.004 90.7 0.002 95.0

resamples, produces coverage rates uniformly very close to the nominal level (94–96%). These results
suggest that bootstrap resampling, with all steps of the procedure described in Section 2.2 replicated in
each resample, is necessary in order to obtain accurate CIs for our estimates.

3.2. Extensions: time-dependent confounders and external validation sample

3.2.1. Assumptions and rationale. Having assessed the performance of martingale residual-based impu-
tation in time-invariant simulations with an internal validation sample, we now extend and assess its
performance in simulations with the data structure similar to our application (described in Section 4),
where (i) both exposure and confounders are time-varying and (ii) the validation sample is an external
sample, drawn from a different source population, (e.g., from a different geographical location). Similar
to time-invariant simulations, we consider a hypothetical study of an association between drug use and
the risk of an adverse event, and generate two measured and two unmeasured confounders, but with both
confounders and the binary exposure (current use of a drug) being time-varying. For these simulations
and the following application, we make two additional assumptions. Firstly, we assume that the time-
varying confounders do not mediate the effects of the previous treatment, so that conventional adjustment
is appropriate and there is no need to use (for example) marginal structural models. Secondly, we assume
that both (i) the clinical characteristics of the subjects in the validation sample, and (ii) the relationships
between exposure, unmeasured confounders, and event are similar to those in the main database (same
disease, similar reasons for treatment). However, we do assume that the underlying event rate in the vali-
dation sample may be different from that in the main database. For example, subjects for whom additional
confounders are measured may represent a higher risk subpopulation enrolled in a clinical, hospital-
based research study. Details of the data generation process are given in the following subsection, and in
Appendix B of the Supporting Information.

Although PSC has not previously been assessed in time-varying data, use of the time-varying propen-
sity score in longitudinal data settings has been shown to effectively control for measured time-varying
confounders, which are not affected by prior treatment [25, 26]. In particular, Ray et al. (2015) showed
that, if a model which adjusts for time-varying treatment and covariates is appropriate (i.e., there is no
mediation), then a model which conditions on a time-varying propensity score can also be expected to
yield unbiased conditional estimates. Thus, we also compare our method with a time-varying extension
of PSC [26].

3.2.2. Data generation. For these simulations, we generated time-varying data for exposure and con-
founders, assuming their values may be updated at up to 10 equally spaced time intervals during the
follow-up period. As in the time-invariant simulations in Section 3.1, for both the main database (n =
10, 000) and, separately, the external validation sample (m = 1000), we first generated two measured
{C1(t),C2(t)} and two unmeasured confounders {U1(t),U2(t)}.

For each subject, the 10 subsequent values of each continuous confounder (C1,C2,U1) were simulated
from a subject-specific multivariate normal distribution with autoregressive correlation structure. The 10
individual values of the unmeasured binary confounder, U2, were generated from a binomial distribution,
with subject-specific probability of U2 = 1, randomly selected from a uniform distribution and assumed
to remain constant over time.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4588–4606
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We then generated exposure based on the confounders. Time-dependent exposure was allowed to
change only at randomly selected intervals, at which time it was regenerated conditional on the current
values of measured and unmeasured confounders.

Finally, we generated the event times, conditional on exposure and confounders. The marginal distri-
bution of event times was taken to be exponential, with a higher event rate in the validation sample than
in the main database. Once the marginal times were generated, the permutational algorithm, specifically
developed and validated for simulating event times conditional on time-varying covariates [27], was used
to match the current values of exposure and all four confounders to events at the corresponding times. To
do this, we used the PermAlgo package in R [28]. This matching is performed so as to generate data con-
sistent with the parameters of a multivariable proportional hazards model (Equation (7)). Administrative
censoring, due to the hypothetical end of the study at time t = 10, was set.

In simulation, we considered scenarios in which, respectively: surrogacy is preserved; surrogacy is
violated with strong and with moderate unmeasured confounding; the true hazard ratio is changed; and
informative censoring occurs through an entirely unmeasured risk predictor. Further details and parameter
values for each of the scenarios can be found in Appendix B of the Supporting Information.

3.2.3. Simulation results. The results of simulations are presented in Table III. Martingale residual-based
imputation yields unbiased estimates for all scenarios, in contrast to seriously biased standard estimates.
Accordingly, similar to time-invariant simulations, martingale residual-based imputation substantially
reduces the RMSE relative to both standard analysis and PSC, especially when the strength of unmea-
sured confounding is increased (last two columns of Table III). Although informative censoring does not
affect the performance of any of the methods (Table III, scenarios 5 and 6), we investigated only a rel-
atively simple informative drop-out mechanism. Future work could explore more elaborate non-random
censoring mechanisms, such as those in which censoring is simultaneously affected by treatment and
unmeasured covariates, or different reasons for censoring may be differently affected by the treatment
and/or confounders. Because impact of informative censoring may depend both on how the exposure
of interest is modeled and on the underlying mechanism [29], it is possible that relative performance
of different methods to deal with confounders measured only in the validation sample may also depend
on these factors.

Similar to time-invariant simulations, use of time-varying PSC reduces bias, relative to standard anal-
ysis, in the scenarios where surrogacy holds (Table III: scenarios 1 and 4–6), but increases bias, and
therefore RMSE, where surrogacy is violated (scenarios 2 and 3). In all time-varying simulations, martin-
gale residual-based estimates are at least as or more accurate than the corresponding estimates obtained
with time-varying PSC (Table III). These results suggest that martingale residual-based imputation may
eliminate or largely reduce bias in analyses with time-varying confounders and exposure, even if impu-
tation is based on an external validation sample with different (here higher) event rates than in the
main database.

Table III. Simulation results for time-dependent simulations for martingale residual-based imputation. Time-
varying simulation results: bias, relative SD, and relative RMSE (relative to martingale residual-based
imputation) for the log hazard ratio for exposure for different methods: (i) standard analysis (adjusting only
for fully measured confounders), (ii) propensity score calibration (PSC), and (iii) martingale residual-based
imputation (MR-based imputation).

Bias Relative SD Relative RMSE

True Unmeasured
Surrogacy

Standard
PSC

MR-based Standard
PSC

Standard
PSCHR confounder analysis imputation analysis analysis

1 1 Moderate Holds 0.215 0.042 0.002 0.884 1.044 2.911 1.176
2 1 Moderate Violated −0.234 −0.455 −0.004 0.905 1.119 2.693 5.048
3 1 Strong Violated −0.414 −0.727 −0.006 0.802 1.092 4.389 7.649
4 1.5 Moderate Holds 0.212 0.049 0.002 0.887 1.070 2.943 1.249

Informative censoring
5 1 Moderate Holds 0.210 0.034 −0.005 0.882 1.083 2.820 1.166
6 1.5 Moderate Holds 0.207 0.043 −0.001 0.887 1.052 2.771 1.187
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4. Use of glucocorticoids and type II diabetes mellitus

To illustrate the implementation of the proposed method, we apply it to reassess the potential increase
in risk of type II diabetes mellitus (DM) in patients being treated with glucocorticoid (GC) therapy for
rheumatoid arthritis (RA) in the UK-based Clinical Practice Research Datalink (CPRD) [30]. GC therapy
is a very common treatment for RA, and has been shown to be very effective in slowing disease pro-
gression [31,32]. However, its use has been associated with a range of potentially serious adverse effects
[33]. Type II DM is considered a possible important side-effect of GC therapy [34,35], but the published
results are ambiguous. Randomized controlled trials of GC therapy have not found an increase in the
risk of diabetes, even in meta-regression [36]. However, randomized controlled trials are often not large
or long-term enough to adequately assess risk of infrequent adverse events [1]. Observational studies
have reported highly varied results, with either an increased risk of diabetes associated with GC therapy
[37, 38], or a lower incidence of diabetes among GC users [39].

This application involves use of an external validation sample with measurements of some additional
potential confounders, not available in the CPRD. The CPRD contains electronic medical records from
around 11 million patients across the UK; and for this analysis, those with RA diagnosis between 1992 and
2009 were identified by a validated algorithm [30]. Available information includes patient demograph-
ics, medical diagnoses, and drug prescriptions. However, some potential confounders of the GC–DM
relationship, including BMI, disability level, and comorbidity index were not available for our CPRD
analyses. On the other hand, these potential confounders are systematically measured in the National
Data Bank for Rheumatic Diseases (NDB), a longitudinal observational study of patients with RA from
the US [40]. Because the NDB was designed with the study of rheumatic diseases in mind, it includes
more rich information on potential confounders relevant for studying the effects of RA drugs. Importantly
for our application, the confounders available in CPRD were also available in NDB. For these reasons,
we will use the NDB as an external validation dataset in our analysis. Details of cohort inclusion, data
collection and variable definitions for each dataset are described elsewhere [30].

For the purpose of this illustrative example, in our CPRD analyses we considered, as measured con-
founders, only a subset of all covariates available in the database: sex, baseline age, prior nonsteroidal
anti-inflammatory drug (NSAID) use (at cohort entry), and time-varying indicators of current use of two
main disease modifying anti-rheumatic drugs: methotrexate and hydroxychloroquine. These confounders
were found to have statistically significant associations with the hazard of DM in preliminary analyses of
CPRD (data not shown). Furthermore, the CPRD analyses included only those 16,898 individuals who
met the inclusion criteria [30] and had no missing data on any of the earlier-measured confounders. These
subjects were followed up on average for about 6.5 years (2365 days). In the NDB analyses, we have infor-
mation on 8253 individuals with a mean follow-up time of just over 4.5 years (1670 days). In addition to
the measured confounders adjusted for in the CPRD analysis, we include in the full multivariable model
the following potential confounders (unmeasured in CPRD), which were identified in preliminary NDB
analyses as statistically significant risk factors for diabetes: Health Assessment Questionnaire (HAQ) dis-
ability score [41], comorbidity index [42], and BMI. For the sake of simplicity, we restrict our analysis to
complete cases (those with complete data on all variables required in their respective database). Because
both the exposure (GC) and several confounders (methotrexate and hydroxychloroquine use among the
measured confounders, and all three unmeasured confounders) were time-varying (see Section 4.1 for
details), we use time-dependent martingale residual-based imputation, as outlined and assessed in simu-
lations in Section 3.2. We also restrict the analysis to only those individuals who had not used GCs in the
three years prior to their start of follow-up, in order to capture as close to a treatment naïve population
as possible.

In each database, patients were followed up from first date of RA diagnosis within the study window, to
either first DM diagnosis or loss to follow-up. In the main databases, current exposure to GC is represented
by a binary time-varying covariate. Accordingly, we divide individual patient follow-up into consecutive
time intervals during which the exposure status does not change, based on the date and duration of GC
prescriptions. Values of all time-varying confounders are established at the beginning of each period and
assumed to be constant until the end of that period.

4.1. Results

Table IV summarizes information on outcomes, exposure, and confounders in both cohorts. The fre-
quency of events was slightly higher in the CPRD database (9.9% vs. 6.4%), although the mean length

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4588–4606
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Table IV. Characteristics of the main database (CPRD) and validation data (NDB). Rows contain total
(percentage) for binary variables, and mean of individual means (over follow-up time) for continuous variables.

NDB CPRD
(n = 8253) (n = 16898)

Incident type II diabetes mellitus 529 (6.4%) 1665 (9.9%)
Follow-up (days): mean (SD) 1670.0 (1359.0) 2364.8 (1643.5)
Event rate (/100 person-years) (95% CI)∗ 1.40 (1.28, 1.53) 1.52 (1.45, 1.60)
Used glucocorticoid during follow-up: n (%) 2358 (28.6%) 5864 (34.7%)
Days exposed amongst users: median (IQR) 304.0 (92.0–732.8) 219.0 (36.0–831.2)
Incidence rate of new exposure (/100 person-years) (95% CI)∗ 8.34 (8.00, 8.68) 7.22 (7.04, 7.41)
Mean % time exposed since first exposure 50.75% 38.75%
Sex = male: n (%) 1554.0 (18.8%) 4953.0 (29.3%)
Baseline age: mean (SD) 58.6 (13.3) 58.1 (14.6)
History of NSAID use at cohort entry: n (%) 6126 (74.2 %) 14335 (84.8%)
Methotrexate use in follow-up: n (%) 4280 (51.9%) 3530 (20.9%)
Hydroxychloroquine use in follow-up: n (%) 2329 (28.2%) 1110 (6.6%)
Baseline HAQ disability score: mean (SD) 0.905 (0.697) –
Baseline comorbidity index: median (IQR) 1 (0–2) –
Baseline BMI: mean (SD) 27.89 (6.42) –

*Poisson CI.

Table V. Results for the fully adjusted and reduced models in the NDB (validation) database (left-hand side)
and CPRD (main) database (right-hand side).

NDB CPRD

Full model

Conventional Conventional
model MR-based model

(confounded) imputation (confounded)
HR 95% CI HR 95% CI HR 95% CI HR 95% CI

Glucocorticoid use 1.48 (1.17, 1.86) 1.81 (1.45, 2.27) 1.15 (0.99, 1.33) 1.38 (1.19, 1.59)
Sex (male = 1) 1.00 (0.79, 1.27) 0.91 (0.73, 1.15) 1.56 (1.40, 1.73) 1.29 (1.16, 1.43)
Baseline age 0.99 (0.99, 1.00) 0.99 (0.99, 1.00) 1.02 (1.01, 1.02) 1.02 (1.01, 1.02)
NSAID use (before cohort) 0.73 (0.59, 0.90) 0.73 (0.59, 0.91) 1.15 (1.01, 1.31) 1.07 (0.94, 1.22)
Methotrexate use 0.89 (0.75, 1.06) 0.81 (0.68, 0.96) 1.28 (1.12, 1.48) 1.22 (1.06, 1.40)
Hydroxychloroquine use 0.73 (0.59, 0.90) 0.70 (0.57, 0.87) 0.91 (0.68, 1.22) 0.86 (0.64, 1.15)
HAQ disability score 1.15 (1.01, 1.31) 1.52 (1.41, 1.64)
Comorbidity index 1.24 (1.17, 1.31) 1.36 (1.31, 1.41)
BMI 1.18 (1.10, 1.26) 1.28 (1.21, 1.35)
BMI2 (per 50 units) 0.93 (0.89, 0.98) 0.89 (0.86, 0.92)

of follow-up was also longer (2365 days vs. 1670 days) and so the two event rates were comparable
(CPRD = 1.5 vs. NDB = 1.4 events per 100 person-years). Exposure to both methotrexate and hydroxy-
chloroquine was more frequent in NDB than in CPRD. This is likely due to the differences in prescribing
preferences of physicians in the two countries, as well as possible differences in disease severity.

Incidence rates of start of GC therapy were similar (8.3 patients initiated GC therapy per 100 person-
years in NDB (95% CI 8.0 to 8.7) versus 7.2 in CPRD (95% CI 7.0 to 7.4)). It is also evident that exposure
varied considerably over time. The mean percent of time exposed amongst users, from first use until end
of follow-up, was 51% in NDB and 39% in CPRD, with lower percentage likely related to longer follow-
up of the latter cohort. Thus, a simple time-fixed exposure definition would not be sufficient for these
analyses, and time-dependent exposures must be considered.

The left-hand columns of Table V compare the results of two models in the NDB database where,
respectively, (i) all important risk factors are included (columns 2–3) and (ii) only those important risk
factors available in the CPRD database are included (columns 4–5). There is evident bias in the reduced
model, with an exposure hazard ratio of 1.81 (95% CI 1.45 to 2.27) versus the fully adjusted hazard ratio of
1.48 (95% CI 1.17 to 1.86). In contrast, the effects of all the confounders adjusted for are almost identical
between the two models estimated in the NDB database (left part of Table V), while the effect of exposure
differs greatly. This pattern of results indicates that the additional covariates, not available for our CPRD
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analyses and, thus, excluded from the reduced model, may act as confounders for the association between
GC exposure and incidence of diabetes. In particular, the fact that the HR for exposure is inflated in
the reduced model suggest that risk factors not measured in CPRD tend to be associated with both (i)
more frequent use of GCs and (ii) higher type II DM risks, reflects a case of potential confounding
by indication [4].

The results of the final model in the CPRD with martingale residual-based imputed unmeasured con-
founders are shown in the second last column of Table V. As expected based on NDB results, adjusting
for the martingale residual-based imputed unmeasured confounders results in a reduction in the hazard
ratio associated with current GC use, relative to that estimated adjusting only for confounders available
in CPRD (from 38% increase in hazard to 15%).

Some limitations of our illustrative analyses have to be recognized and may make it difficult to directly
compare our estimates with those obtained from a recent comprehensive investigation of the same asso-
ciation [30]. Of course, the accuracy of adjustment for additional confounders, not measured in CPRD,
depends on the untestable assumptions that their associations with GC exposure and DM risk are similar
in the two databases. Furthermore, we were not able to account for some additional potential confounders,
such as disease severity, which was not recorded in either NDB or CPRD, so that some residual con-
founding of all estimates in both datasets cannot be excluded [30]. If distributions of further, completely
unmeasured confounders were to differ between the two data sources, this may partly explain the differ-
ence between the final estimate in the full model in NDB and the final estimate in CPRD, obtained using
our martingale residual-based method. It is also possible that some differences in the way some covariates
were defined or measured in the respective datasets could contribute to the observed differences in their
estimated effects. In addition, we considered only the simplest time-varying exposure metric, represent-
ing current GC exposure, while more complex exposure metrics, possibly involving cumulative effects
of past doses, may account better for the impact of GC exposure [30,43]. Finally, restriction to complete
cases might have induced some selection bias and possibly affected our estimates. However, in spite of
such limitations, this example illustrates the ability of the proposed martingale residual-based imputation
to correct for the potential impact of unmeasured confounders, which are available in an internal or an
external validation subsample.

5. Discussion

Unmeasured confounding may be considered an Achilles’ heel of observational research on real-life
studies of the safety or effectiveness of treatments [4, 8]. While no general solution to this problem is
ever likely to be proposed, even those methods that can reduce or eliminate the resulting bias only under
some plausible assumptions are of considerable interest [9,44,45]. In this spirit, we have proposed a new
method for adjusting for unmeasured confounding bias in time-to-event analyses, when the confounders
not measured in the main database are available in an internal or external validation sample. The method
incorporates the martingale residuals into a model estimated in the validation sample, which is then
used to impute the confounders unmeasured in the main database. In real-life applications, the validation
sample could be an internal subset of the same source population included in the main database, or
may be external, that is, drawn from a different population known or expected to have similar clinical
characteristics, and we illustrate how the method can be applied in either case. Interestingly, sometimes
an inherently internal validation sample may have to be analyzed as external, because the individuals
cannot be linked between the two data sources due to data confidentiality concerns.

Although several methods have previously been proposed to use additional confounder measurements
available in validation samples, such as BayesPS [9], two-stage calibration [10], and PSC [7]; only PSC
has been extended to analysis of time-to-event data [7]. We have attempted to fill this gap in the current
literature by developing and validating a new method, designed specifically for time-to-event analyses,
that addresses the issue of unmeasured confounding while avoiding the restrictive surrogacy assumption
required by PSC [7].

In simulations, our martingale residual-based method yielded almost uniformly unbiased estimates of
the exposure/treatment association, regardless of the underlying assumptions about the true hazard ratio,
strength and direction of unmeasured confounding, violation of surrogacy, and size of validation sam-
ple. Sensitivity analyses assessed the impact of different reasons for possible violations of the MCAR
assumption with respect to the relationship between the validation sample and the main study database,
where the additional confounders were not measured, that is, ‘missing’. Differences in the distribution
of the measured or unmeasured confounder, or in the event rate, had no marked impact on the perfor-
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mance of any of the methods (Table I, scenarios 16–18). Accordingly, similar to main simulations, in all
sensitivity analyses the martingale residual-based imputation performed better than, or at least as well
as, all other methods considered. In many scenarios, its performance was similar to imputation with
inclusion of separate terms for log of survival time and event indicator [22]. The fact that both martin-
gale residual-based and log(t) imputations performed systematically better than simpler methods may be
explained by the fact that both methods incorporate information about both survival time and event sta-
tus in a mathematically similar manner. On the other hand, the results of our simulated scenarios 20 and
21 (Table I) suggest that martingale residual-based approach may be somewhat more flexible in account-
ing for more complex distributions of censoring and/or event times. In cases where the baseline hazard
is irregular, some other transformation of t, rather than the log, may be more appropriate, while the mar-
tingale residual takes the estimated baseline hazard into account without the need for any assumptions
about its analytical form or shape (Equation (1)). Furthermore, the martingale residual integrates all infor-
mation on individual subjects’ follow-up duration and status at end of follow-up, while the log(t)-based
approach assumes their associations with the unmeasured confounder are additive, that is, independent
of each other. Finally, the martingale residual accounts for the values of observed covariates and expo-
sure, which may partly explain the observed outcome. Together, the aforementioned properties may help
the martingale residual to discriminate slightly better than log(t)-based imputation between, for example,
subjects who were censored early with low versus with high risk. Future studies should assess and com-
pare the performance of these two methods across a wider range of assumptions about the underlying
data structure.

As expected, our complex, multi-stage estimation procedure induced some moderate variance infla-
tion, especially in scenarios where the validation sample was relatively small, with as few as 25 to 50
observed events. A bias-variance trade-off is typical of many complex bias reduction methods, such as
IPTW methods for marginal structural models [46, 47] and instrumental variable methods [48]. Such
methods focus on bias elimination, but the multi-step estimation procedures introduce further uncertainty
about the final parameter estimates. However, because both PSC and standard analysis, selected for com-
parison because of their applicability to survival analyses, yielded often substantially biased estimates,
our martingale residual-based estimates had a systematically better overall trade-off between bias and
variance, with lower RMSE in all scenarios except one (with only minimal unmeasured confounding).
In the main simulations, to provide proof of concept, we assumed that both confounders and exposure
were time-invariant. Then, we also validated our method in more complex simulations, with time-varying
measures of both confounders and exposure, and an external validation sample with event rate twice as
high as that in the main database.

In real-life analyses of the association between GC therapy and risk of developing type II DM, our
method reduced the hazard ratio associated with current GC use by more than 50%, relative to standard
adjustment for only those confounders that were recorded in the main database.

Our method has some limitations and imposes some restrictions. Firstly, whereas our method per-
formed well even with a fairly small size of validation sample (250 subjects and only 25 events), it should
not be applied in the case of extremely small validation samples. In such situations the resulting esti-
mates may not be stable, to the extent that their mean squared error may be possibly higher than that
of the biased but considerably more stable standard estimates, which are obtained from the large main
database and, thus, adjusted only for fully measured confounders. The same limitation likely applies to
other methods that attempt to use validation samples, such as PSC. Secondly, although our preliminary
simulations suggest a good performance of the method even when applied in studies with an external val-
idation sample having a different event rate than the main database, and in cases where selection into the
validation sample depends on measured or unmeasured confounders such that confounder distributions
may differ between the two data sources, it remains to be investigated how further differences concerning
confounder distributions or exposure–confounder associations would affect the accuracy of our estimates.

In the current implementation of our method, each confounder is imputed independently of all other
confounders. In the situation where some confounders are highly correlated with each other, each of
the independently imputed values of individual correlated confounders may separately account for the
same underlying sources of the confounding bias. Depending on the pattern of multivariate correlations
between the relevant confounders, exposure, and the outcome, this may possibly result in over- or under-
adjustment for the joint impact of several correlated confounders. Future research should consider this
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more complex setting, with multiple correlated unmeasured confounders, and assess the potential benefits
of replacing separate imputation of individual confounders by imputation of an aggregate confounder
score akin to the disease risk score [49].

In time-varying settings, we assumed that both (i) current exposure (treatment assignment) and (ii) cur-
rent hazard (outcome) depend only on the current values of measured and/or unmeasured confounders.
Accordingly, we used only current values of measured confounders, time-varying exposure and martin-
gale residual, observed at time t, to impute the concurrent values of unmeasured time-varying confounders
Uj(t). In some applications, the user may prefer to assume some lag (L) in the relationship between pre-
vious values of Uj(t − L) and current exposure X(t), and/or current hazard 𝜆(t). In such applications, the
methods outlined in Section 2.2 are still generally applicable, but the data analyst will have to decide
how to anchor the exposure and/or martingale residual measurements in time, and may, for example use
X(t + L) and M̂(t + L) to impute Uj(t). Future research should investigate the performance of our martin-
gale residual-based method in such, more complex, settings and assess the robustness of the results with
respect to choice of the lag L.

In this paper, we have described the method when both confounders and exposure are time-invariant
or both are time-varying. The time-invariant case is straightforward, and the simple time-varying case is
described in Section 3.2 and illustrated in Section 4 followed easily. However, extensions of the method to
more complex time-varying exposure metrics, which reflect, for example, possible cumulative effects and
to marginal structural Cox models, which account for time-varying variables that act as both confounders
and mediators of treatment effects [50–52], will require further analytical developments and validation
studies. Although we investigated only imputation of continuous and binary confounders, with, respec-
tively, linear and logistic regression, it is possible to impute categorical or ordinal confounders using
usual models for imputation of such variables, such as multinomial logistic regression or the proportional
odds model [53].

Unmeasured confounding remains an important problem in many observational studies, and particu-
larly in those which rely on large administrative databases. Our method may help reducing its impact in
those time-to-event analyses where additional information on confounders is available in a smaller valida-
tion sample. We hope that our results may both improve the accuracy of real-life observational studies of
different treatments or exposures and stimulate further methodological developments in this challenging
but important area of statistical research.

Appendix A: A formal rationale for the use of martingale residuals in the
imputation model

Under a Cox PH model with both exposure X and measured confounders C fully measured and time-
invariant (for this proof, let {X,C} be jointly represented by Z), and unmeasured confounders U

𝜆(t|X,C,U) = 𝜆(t|Z,U) = 𝜆0(t) exp{𝛽ZZ + 𝛽UU}, (9)

the log-likelihood can be written as

log fi(t) = 𝛿 log 𝜆(t) − Λ(t)
= 𝛿(log 𝜆0(t) + 𝛽ZZ + 𝛽UU) − Λ0(t)e𝛽ZZ+𝛽UU .

(10)

Using usual notation, 𝛿 is the indicator for event (1 if subject had an event, 0 if censored), Λ0(t) is the
cumulative baseline hazard.

Using Bayes’ theorem and (10)

log f (U|t, 𝛿,Z) = log
f (t, 𝛿|Z,U).f (U|Z)

f (t, 𝛿|Z)
= log f (t, 𝛿|Z,U) + log f (U|Z) + const.(t, 𝛿,Z)
∝ log f (U|Z) + 𝛿(log 𝜆0(t) + 𝛽ZZ + 𝛽UU) − Λ0(t)e𝛽ZZ+𝛽UU .

(11)

The martingale residual is generally defined as follows:

Mi(t) = Ni(t) − ∫
t

0
Yi(s)e𝛽

′Xi(s)dΛ0(s). (12)

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4588–4606
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However, for the case with no time-varying covariates, this can be simplified, and the estimated
martingale residual written as

M̂i = 𝛿i − Λ̂0(𝜏i)e𝛽
′Xi (13)

where Λ̂0 is the Breslow estimate of cumulative baseline hazard, and 𝜏i is the event time for subject i.
We are particularly interested in the martingale residual from the reduced model, which excludes U,

that is,

M̂∗
i = 𝛿i − Λ̂∗

0(𝜏i) exp
{
𝛽∗′Zi

}
. (14)

We consider the case of a single unmeasured confounder, U, but deal separately with a binary versus
a continuous U.

A.1. (1) Binary U

Assume the true model for U|Z is logitP[U = 1|Z] = 𝛼0 + 𝛼1Z. Then using (11)

logitP[U = 1|𝜏, 𝛿,Z] = log P[U = 1|𝜏, 𝛿,Z] − log P[U = 0|𝜏, 𝛿,Z]
∝ log P[U = 1|Z] + 𝛿(log 𝜆0(𝜏) + 𝛽ZZ + 𝛽U) − Λ0(𝜏) exp{𝛽ZZ + 𝛽U}
− log P[U = 0|Z] − 𝛿(log 𝜆0(𝜏) + 𝛽ZZ) + Λ0(𝜏) exp{𝛽ZZ}

= 𝛼0 + 𝛼1Z + 𝛿𝛽U − (exp{𝛽U} − 1)Λ0(𝜏) exp{𝛽ZZ}.

(15)

If we can assume that 𝛽∗Z (from the reduced model in Equation (2)) is a reasonable estimate for 𝛽Z

(from the full model), and Λ̂0 a reasonable estimate for Λ0, then the last term of (15) is similar to the
second term of the martingale residual in Equation (14). Also included in both is a linear term for 𝛿.

Furthermore, for small to moderate log HRs for the effect of U on the hazard 𝛽U , (−0.5 < 𝛽U < 0.5)
: e𝛽U − 1 ≈ 𝛽U . If this is the case, then (15) ≈ 𝛼0 + 𝛼1Z + 𝛽U(𝛿 − Λ0(𝜏) exp{𝛽ZZ}), and the last term
is almost identical to the martingale residual. In Section 3, we assess the impact of increasing 𝛽U on the
accuracy of our estimates.

A.2. (2) Normally distributed U

Assume the true model for U is E[U|Z] = 𝛼0 +𝛼1Z, and therefore log f (U|Z) = −(U−𝛼0 −𝛼1Z)2∕2𝜎2 +
const.

From (11):

log f (U|𝜏, 𝛿,Z) ∝ −(U − 𝛼0 − 𝛼1Z)2∕2𝜎2 + 𝛿(log 𝜆0(𝜏) + 𝛽ZZ + 𝛽UU)
− Λ0(𝜏) exp{𝛽ZZ + 𝛽UU}

= 𝛿𝛽UU − Λ0(𝜏) exp{𝛽ZZ + 𝛽UU} − (U − 𝛼0 − 𝛼1Z)2∕2𝜎2

(16)

This cannot be written as a normal PDF due to the exp{𝛽UU} term. However, if we take a Taylor
expansion of order 1 around (Ui,Zi):

exp{𝛽ZZ + 𝛽UU} ≈ exp{𝛽ZZi + 𝛽UUi}(1 + 𝛽Z(Z − Zi) + 𝛽U(U − Ui)), (17)

and (16) becomes:

𝛿𝛽UU − Λ0(𝜏) exp{𝛽ZZi + 𝛽UUi}(1 + 𝛽Z(Z − Zi) + 𝛽U(U − Ui)) − (U − 𝛼0 − 𝛼1Z)2∕2𝜎2

= 𝛽UU(𝛿 − Λ0(𝜏) exp{𝛽ZZi + 𝛽UUi}) − (U − 𝛼0 − 𝛼1Z)2∕2𝜎2 + const.

= −
(
U −

(
𝛼0 + 𝛼1Z + 𝜎2𝛽U

(
𝛿 − Λ0(𝜏) exp{𝛽ZZi + 𝛽UUi}

)))2 ∕2𝜎2 + const.

(18)

Therefore U|𝜏, 𝛿,Z is approximately distributed as N(𝛼0 +𝛼1Z+𝜎2𝛽U(𝛿−Λ0(𝜏) exp{𝛽ZZi +𝛽UUi}), 𝜎2).
The mean is, therefore, a function of measured covariates and a term very similar to the full model martin-
gale residual in Equation (12). If we assume that the reduced model martingale residual in Equation (14)
is a good approximation for the full model martingale residual, then its inclusion in the imputation model
would be expected to increase the accuracy of the imputation of U.
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