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Unbiased estimation of causal parameters frommarginal structuralmodels (MSMs) requires a fundamental assump-

tion of no unmeasured confounding. Unfortunately, the time-varying covariates used to obtain inverse probability

weights are often error-prone. Although substantial measurement error in important confounders is known to under-

mine control of confounders in conventional unweighted regressionmodels, this issue has received comparatively lim-

ited attention in the MSM literature. Here we propose a novel application of the simulation-extrapolation (SIMEX)

procedure to address measurement error in time-varying covariates, and we compare 2 approaches. The direct ap-

proach to SIMEX-based correction targets outcome model parameters, while the indirect approach corrects the

weights estimated using the exposure model. We assess the performance of the proposed methods in simulations

under different clinically plausible assumptions. The simulations demonstrate thatmeasurement errors in time-dependent

covariates may induce substantial bias in MSM estimators of causal effects of time-varying exposures, and that both

proposed SIMEX approaches yield practically unbiased estimates in scenarios featuring low-to-moderate degrees of

error. We illustrate the proposed approach in a simple analysis of the relationship between sustained virological re-

sponse and liver fibrosis progression among persons infected with hepatitis C virus, while accounting formeasurement

error in γ-glutamyltransferase, using data collected in the Canadian Co-infection Cohort Study from 2003 to 2014.

causal inference; marginal structural models; measurement error; SIMEX; simulations; time-varying covariates

Abbreviations: APRI, aspartate aminotransferase:platelet ratio index; CCC, Canadian Co-infection Cohort Study; GGT, γ-glutamyl-

transferase; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IPW, inverse probability weighting; MSE, mean squared

error; MSM, marginal structural model; SIMEX, simulation-extrapolation; SVR, sustained virological response.

In longitudinal analyses of observational data, control of
confounding is complicated whenever time-varying con-
founders are also intermediates on the causal pathway between
the exposure and outcome. Adjustment for such covariates in
standard regression models leads to biased estimators of expo-
sure effects (1–3).

Marginal structural models (MSMs) represent an important
improvement over conventional regression-based adjustment
for time-varying covariates. The most common form of estima-
tion for these models involves weighting by the inverse proba-
bility of exposure, or inverse probability weighting (IPW) (4).
A fundamental assumption of MSMs is that there is no unmea-
sured confounding (1). In conventional, unweighted regression
models, mismeasurement of confounders and mismodeling of

functional forms in covariate-exposure relationships may un-
dermine confounding adjustment (5–7). To date, the effect of
measurement errors in confounders on inverse probability-
weighted estimators has not been extensively studied (8, 9),
even though MSMs are increasingly used in settings where
measurement error is likely. For example, in analyses of human
immunodeficiency virus (HIV) data, time-varying CD4+ cell
counts are often used in IPW estimation (10). Like most lab-
oratory measurements, CD4+ cell count is subject to high
variability that is well-characterized following decades of
use (11–13).

The behavior of exposure effect estimators in the context
of misclassified or mismeasured confounders has received
considerable attention in the literature. Greenland (14, 15)
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illustrated that adjustment for misclassified covariates impairs
confounding control, and that nondifferential misclassification
biases estimates in the direction of the crude exposure-outcome
association. Ogburn and VanderWeele (16) demonstrated that
adjusting for nondifferentially mismeasured ordinal covariates
may increase bias—for example, if their effects differ qualita-
tively across exposure strata. In the context of IPW, covariate
mismeasurement may result in over- or underestimation of the
true parameters, and occasionally changes in the sign of their
estimates (8). Overall, prior research suggests that the conse-
quences of covariate mismeasurement may be unpredictable.
While most published IPW analyses do not implement mod-

eling strategies to address measurement error, we note 2 im-
portant exceptions. To estimate the effect of HIV treatment on
incident acquired immunodeficiency syndrome or death, Cole
et al. (17) applied regression calibration to address exposure
measurement error in a Cox MSM. McCaffrey et al. (9) sug-
gested a propensity score-based approach to handle errors in co-
variates, relying partially on simulations, using the observed data
to generate a weighting function. Their method performs well,
but its implementation may be challenging for epidemiologists.
Here we consider a novel application of the simulation-

extrapolation (SIMEX) procedure, originally proposed by
Cook and Stefanski (18), to address measurement error in con-
tinuous time-varying covariates used for IPW. Our proposed
adaptation of the SIMEX procedure to MSMs is straightfor-
ward and may be implemented with several statistical software
packages. The method is both intuitive and easily explained.
We validate the proposed approaches via simulation and con-
duct a simple analysis to illustrate a practical application.

SIMEX CORRECTION OF MEASUREMENT ERROR IN

CONFOUNDING VARIABLES

Overview of the SIMEX procedure

Consider the classical measurement error model Lij� ¼
Lij þ εij; where Lij� is the observed jth measure for individual
i of covariate Li, Lij is the corresponding true value, and εij rep-
resents a normally distributed mean-zero error term (19). Note
that SIMEX procedures for Berkson error are also available
(20, 21). For simplicity, we begin by describing the effect of
a dichotomous exposure X in a single time interval:

Y ¼ β0 þ β1X: ð1Þ

Denote the target parameter by θ, where θ could be an average
exposure effect or a vector of regression coefficients (β0, β1).
Given a regression model, the SIMEX procedure approx-

imates the functional relationship between model parame-
ters and the variance of measurement error using a 2-step
simulation-based approach, assuming that the variance is
known or accurately estimated (14). First, additional (“artifi-
cial”) random error is added to the original values of the
error-prone covariate. The degree of artificial error is incre-
mented over a set of user-defined multipliers λ. The number
of λ values chosen need not be large, though Monte Carlo
error is reduced as their quantity increases (18). For each
value of λ, B data sets are simulated. The original regression
model is refitted to each of B data sets to obtain θ̂bðλÞ: Finally,

the mean of the resulting parameter estimates is calculated:
θ̂ðλÞ ¼ B�1 PB

b¼1 θ̂bðλÞ: In the second step, θ̂ðλÞ is regressed
on λ, often assuming a quadratic relationship. Extrapolating
the function back to the hypothetical case with no measure-
ment error, which corresponds to λ =−1, yields the SIMEX
estimate of the parameter of interest (19).

Proposed adaptation of SIMEX to MSMs

In equation 1, the exposure parameter is β1, and the dependent
variable Y represents the average difference between the coun-
terfactuals YX=1 and YX=0, assuming all individuals had
been exposed or not exposed, respectively. To obtain unbiased
causal estimates of the effect of X while addressing confound-
ing by L in equation 1, we may fit a weighted outcome model
by inverting probabilities of exposure estimated from the fol-
lowing exposure model:

logitðPðX ¼ 1jLÞÞ ¼ α0 þ α1L: ð2Þ

We consider 2 alternative applications of the SIMEX pro-
cedure to address errors in L. Both approaches employ the
same error variance information, but the approaches differ in
the choice of which mean estimates are regressed on λ (see
Web Table 1, available at http://aje.oxfordjournals.org/). The
direct correction approach targets the estimated parameter β1
in equation 1 while using naive weights obtained from the orig-
inal, uncorrected exposure model. In denoting the SIMEX esti-
mate for the bth (b = 1, . . ., B) data set as β̂1;bðλÞ;we obtain the
direct SIMEX estimator by extrapolating the function β̂1ðλÞ ¼
B�1 PB

b¼1 β̂1;bðλÞ to λ =−1.
In the second approach, termed indirect correction, SIMEX

is applied to the exposure model, and the IPW weights are
corrected. Here, the correction is targeted at the estimated pa-
rameters α0 and α1 in equation 2; extrapolating α̂0ðλÞ; α̂1ðλÞ
to λ = −1 yields the SIMEX-corrected estimators for expo-
sure model coefficients (Web Appendix 1). The outcome
model is fitted using the SIMEX-corrected IPW weights.
The indirect SIMEX procedure is easily implemented in
most statistical environments. In contrast, no software pack-
ages support direct correction, as existing implementations
were not designed for 2-stage estimation procedures.

SIMULATION STUDIES

In simulations, we assessed bias in naive MSMs, which
do not correct for measurement error in a time-varying covari-
ate, and the potential of the 2 SIMEX approaches to reduce the
bias. We considered different combinations of relevant parame-
ter values, and we simulated 300 data sets for each combination.
We performed analyses in R, version 3.1.1 (R Development
Core Team, Vienna, Austria), using our own SIMEX imple-
mentation (Web Appendix 2) and the R sprint package to
efficiently apply the nonparametric bootstrap (22, 23). In all
analyses, we specified 200 SIMEX replicates and used a qua-
dratic function to perform the extrapolation. To account for clus-
tering and the 2-stage estimation procedure, we obtained 95%
confidence intervals for the exposure effect by means of the
nonparametric bootstrap percentiles approach, using 1,000 boot-
strap replicates for each parameter combination (24).
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Methods

Single-time-interval simulation study: data generation.

We first considered a single time interval setting to examine
SIMEX performance in a simplified context. True (i.e., error-
free) values of a continuous confounder L were generated
from a uniform [−4, 4] distribution. A dichotomous exposure
X, conditional on L, was then generated, assuming

p ¼ logit�1ðα0 þ α1LÞ ¼ ð1þ expð�α0 � α1LÞÞ�1:

We fixed α0 at 0.25. To minimize the risk of positivity viola-
tions, we simulated exposure probabilities bounded between
0.1 and 0.9 by setting α1 at 0.25, 0.50, or 0.75. The error-
prone covariate L* was generated by adding random error
drawn from an N(0, σδ) distribution, with standard deviations
σδ of 0.25, 0.75, and 1.25, representing scenarios with in-
creasing measurement error.

The outcome, Y, was normally distributed with the ex-
pected value dependent on the exposure X and the “true”
value of confounder L:

Y ¼ β0 þ β1X þ β2Lþ ε;

where ε∼ N(0, 1). Figure 1A illustrates the data generation
scheme using a directed acyclic graph. In all, we examined
27 simulated scenarios corresponding to various combinations
of sample size (n = 100, n = 500, n = 1,000), measurement
error magnitude (controlled by σδ), and strength of confound-
ing due to L (controlled by β1).

Two-time-interval simulation study: data generation. Initial
error-free values of a continuous covariate L1 were drawn
from a Uniform distribution with range −2 to 3. We generated
first-interval exposure status X1 from a Bernoulli distribution,
conditional on L1 with probability p = logit−1(0.25 + α1L1),
with α1 equal to 0.50 or 0.75. The second-interval value of
L was then generated from L2 = 0.3L1 + 1.25X1 + ε, where
ε ∼ N(0, 1). We generated second-interval exposure status
X2 given a Bernoulli distribution with probability p =
logit−1(0.25 + α1L2 – 1.25X1). The outcome Y, at the second
interval, was generated as

Y ¼ β0 þ β1X1 þ β2X2 þ β3L1 þ β4L2 þ η;

where η∼N(0, 1). Figure 1B depicts the 2-interval data gen-
eration scenario. Error-prone values of Lj ( j = 1, 2) were
obtained by adding random error, drawn from N(0, σδ), to
the respective error-free values. We varied the strength of
measurement error by specifying σδ to be 0.25 or 1.25.

Single-time-interval study: analysis. In each simulated
data set, we fitted 2 alternative logistic models to predict ex-
posure probabilities conditional on the error-free L or the mis-
measured L*. Inverting the predicted probabilities from each
of these models generated weights, which were used to fit the
2 corresponding MSMs for a linear regression of Y on X.We
compared the resulting regression coefficients to assess the
influence of measurement error.

Secondary single-time-interval study: application of SIMEX-

corrected MSMs to actual clinical data contaminated with

additional error. Web Appendix 3 provides results for sec-
ondary simulations designed to more closely mimic real data

and the example considered in the case study, in which we
systematically increase error in a time-varying covariate
using a clinical data set (Web Figure 1).

Two-time-interval simulation study: analysis. The 2-time-
interval simulations were analyzed similarly to the single-time-
interval study, using separate logistic models to respectively
regress X1 on L1 and regress X2 on X1 and L1. For the 2-time-
interval MSMs, we stabilized the weights to reduce variance
(1). Further details are available in Web Table 1.

Secondary 2-interval study: exposure status conditional on

the mismeasured covariate. In our previous simulations,
only the error-prone covariate was available to the analyst,
while exposure was allocated using the true, error-free covari-
ate. However, decisions to initiate, modify, or discontinue treat-
ment may depend on the error-prone covariate, if no other
relevant information is available to clinicians. In a sensitivity
analysis, we assumed that exposure was conditional on the
mismeasured covariate values of L1� and L2�; as illustrated in
Figure 1C. The simulated data were analyzed using the same
methods as in the primary 2-interval study.
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A)

X1 X2 Y

L1

L1 L2

L2

∗

L1
∗

∗

L2
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δδ

B)

X1 X2 Y

L1 L2

δ

δ

C)

Figure 1. A) Data generation scenario for single-time-interval initial
simulation studies, in which exposure is conditional on error-free co-
variate L. Measurement error is represented by δ. B) Data generation
scenario for 2-interval simulation studies, in which exposure depends
on error-free covariate Lj. Measurement error is represented by δ.
C) Data generation scenario for secondary 2-interval simulation stud-
ies, in which exposure depends upon mismeasured covariate Lj

�.
Measurement error is represented by δ.
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Sensitivity analysis: misspecification of measurement error

variance. In our analyses of simulated data using the SIMEX
procedure, we implicitly assumed that the measurement error
variance is known precisely. In practice, this assumption may
be violated to some degree. Consequently, we reanalyzed
data in the 2-interval setting (Figure 1B), with α1 = 0.50, to
assess the influence of measurement error variance misspeci-
fication on SIMEX performance. We varied the ratio of speci-
fied measurement error variance to the true variance (used to
generate L*) across the range [0.25, 0.50, 0.75, 1.00, 1.25,
1.50, 1.75], with α1 = 0.50 and all other parameters identical
to those from the primary 2-interval simulations.

Comparative assessment of SIMEX performance. In
Web Appendix 3, we present pairwise correlations for both
SIMEX approaches and the naive MSM across all single-
time-interval simulations (Web Figure 2) and consider the ac-
curacy of the quadratic extrapolation in further simulations
(Web Figure 3).

Simulation results

Single-time-interval study. Web Table 2 presents estimates
from the naive MSM, which does not correct for measurement
error, while Table 1 shows estimates from the 2 error-corrected
SIMEX models.
Bias in the naive estimators worsened systematically as mea-

surement error increased (WebTable 2). For example, for a sam-
ple size of n = 1,000, with α1 = 0.25, a 3-fold increase in σδ
(from 0.25 to 0.75) resulted in a 7-fold increase in bias. The
bias in the naive model grew as the strength of the association
between the error-prone covariate L* and exposure X increased.
For n = 1,000 and σδ = 0.25, a 3-fold increase in α1 (from 0.25
to 0.75) resulted in a 2-fold increase in bias. Due to bias, cover-
agewas systematically low; the lowest coverage corresponded to
settings with the highest σδ and stronger L-X associations.
Table 1 compares both SIMEX-based approaches. When

measurement error was lowest (σδ = 0.25), SIMEX-corrected
models yielded nearly unbiased estimates comparable to those
from the error-free model (Web Table 2). For σδ = 0.75, me-
dian bias in β1 was 99% and 88% lower for the indirect and
direct SIMEXmodels, respectively, relative to the naivemodel.
Due to a small degree of remaining bias, coverage rates were
over 90% for both direct and indirect approaches, in contrast
to poor coverage for the naive model (Table 1). Given high
measurement error (σδ = 0.75), the indirect and direct SIMEX-
corrected estimates were slightly biased, but they still reduced
bias by 68% and 59% relative to the naive model estimates.
As anticipated, standard deviations of exposure effect esti-

mates were slightly higher for both SIMEX-based models
relative to naive estimates. The degree of variance inflation
was minimal when the specified association between L and
X was weakest (α1 = 0.25). For α1 = 0.50 and n = 1,000, av-
erage standard deviations were 23% greater for the indirect
approach and 14% greater for the direct approach, in compar-
ison with the naive model (data not shown). Given α1 = 0.75,
σδ = 1.25, and n = 1,000, mean standard deviations for the
direct and indirect approaches were 28% and 50% greater
than those for the naive model, respectively. However, mean
squared errors (MSEs) for the SIMEX-corrected models were
systematically lower than those for the naive model, reflecting

a good trade-off in variance for bias, particularly when α1 and
σδ were largest (Table 1).
Given α1 = 0.25, both SIMEX approaches produced highly

comparable estimates across varying sample sizes and measure-
ment error magnitudes.When the influence of L onXwas stron-
ger (α1 = 0.50 or 0.75) and σδ = 1.25, the indirect SIMEXmodel
(Table 1, right side) exhibited lower bias and MSE compared
with the direct SIMEX model (Table 1, left side).
Both approaches yielded similar coverage for low-to-

moderate confounding and smaller σδ. With increased N,
coverage tended to decrease, as narrow intervals imply that
even a relatively small bias results in suboptimal coverage.
Coverage for the SIMEX-corrected models was noticeably
poorer for higher levels of measurement error. Inadequate
fit of the quadratic extrapolant is one possible explanation
(25, 26). Kukush et al. (21) suggest that at larger error mag-
nitudes, the naive ordinary likelihood estimator no longer
conforms sufficiently to a quadratic relationship, and they pro-
pose alternative estimators to address this issue. An alternate hy-
pothesis is that severemismeasurement ofL limits the amount of
useful information available for adjustment using L*. Overall,
estimates from both SIMEX approaches remained practically
unbiased and very similar for low-to-moderate degrees of mea-
surement error.Whenmeasurement error wasmore extreme, the
indirect SIMEX approach yielded better coverage, lower bias,
and lower MSE.

The 2-time-interval study. As in the 1-interval setting,
SIMEX-corrected estimates were uniformly less biased and
featured lower MSEs than the naive model (Table 2, panels
A andB of Figure 2, andWeb Table 3). Given higher measure-
ment error and stronger confounding (scenario 4), the biases
of direct and indirect SIMEX exposure effect estimates for
the first interval were 56% and 71% smaller, respectively,
than the bias from the naive model. In the second interval,
biases in the direct and indirect estimates were 33% and
41% smaller, respectively.
Both SIMEX models exhibited nearly identical coverage

for α1 = [0.50 or 0.75] and σδ = 0.25 and improved coverage
versus the naive model given σδ = 1.25. While coverage of
the direct and indirect SIMEX-corrected intervals was as
low as 53% and 78%, it was 0% for the naive model. In sce-
narios 1–3 from the primary study, where exposure depended
on the error-free covariate, the two approaches produced
nearly identical estimates. In scenario 4, given high measure-
ment error and a strong L-X relationship, the indirect ap-
proach appeared more accurate (Table 2).
In contrast, in our secondary simulations, where exposure

depended on error-prone covariates Lj�, both SIMEX ap-
proaches introduced bias, which grew as measurement error
increased (Figure 2, parts C and D), while the naive MSM
yielded unbiased estimates with the lowest MSE. This find-
ing was not surprising; Figure 1C illustrates that inclusion of
Lj� in the exposure (weighting) model effectively blocks the
causal path between Xj and Lj�. Using IPW, we impose con-
ditional independence between Xj and Lj� (27, 28).
Figure 3 presents the results of a sensitivity analysis. It ap-

pears that when exposure depends on the error-free covariate,
SIMEX-corrected estimates are less biased than the naive es-
timates, even when the variance of the error distribution is
misspecified by as much as 50%.
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Table 1. Results FromaSingle-Time-Interval Simulation StudyWith 27Scenarios (Rows) inWhichSample Size (N ),

the Magnitude of the Confounder L (α1), and the Standard Deviation of Measurement Error σδ are Varied in Marginal

Structural Models Including an Error-Free L and an Uncorrected Error-Prone L*

α1, N, and
Scenario

Error
Deviation

(σδ)

Model Using SIMEX-Corrected L*

Direct Correction Indirect Correction

Bias
(β1)

Relative
MSEa MCSE

95%
Bootstrap
Coverageb

Bias
(β1)

Relative
MSEa MCSE

95%
Bootstrap
Coverageb

0.25

100

A 0.25 −0.006 1.000 0.219 0.950 −0.007 1.000 0.220 0.953

B 0.75 0.008 0.933 0.288 0.963 0.004 0.944 0.290 0.960

C 1.25 0.099 0.780 0.355 0.950 0.089 0.792 0.360 0.957

500

D 0.25 0.008 1.000 0.099 0.943 0.008 1.000 0.099 0.943

E 0.75 0.030 0.472 0.127 0.943 0.026 0.472 0.128 0.943

F 1.25 0.127 0.385 0.156 0.890 0.120 0.375 0.158 0.900

1,000

G 0.25 0.002 1.000 0.076 0.943 0.002 1.000 0.076 0.943

H 0.75 0.022 0.370 0.099 0.920 0.018 0.370 0.100 0.920

I 1.25 0.115 0.329 0.120 0.787 0.110 0.318 0.122 0.817

0.50

100

J 0.25 −0.005 1.016 0.251 0.963 −0.008 1.016 0.251 0.967

K 0.75 0.028 0.723 0.326 0.963 0.002 0.764 0.337 0.960

L 1.25 0.214 0.506 0.388 0.937 0.170 0.525 0.417 0.960

500

M 0.25 0.005 0.933 0.117 0.937 0.001 0.933 0.118 0.937

N 0.75 0.035 0.271 0.146 0.930 0.008 0.271 0.152 0.950

O 1.25 0.222 0.256 0.173 0.730 0.181 0.217 0.186 0.830

1,000

P 0.25 −0.003 0.875 0.085 0.917 −0.007 0.875 0.085 0.920

Q 0.75 0.025 0.178 0.111 0.907 −0.002 0.178 0.115 0.927

R 1.25 0.211 0.216 0.132 0.603 0.170 0.171 0.141 0.750

0.75

100

S 0.25 0.025 1.009 0.335 0.943 0.015 1.009 0.335 0.943

T 0.75 0.055 0.755 0.452 0.947 −0.013 0.792 0.467 0.967

U 1.25 0.327 0.479 0.499 0.890 0.220 0.486 0.559 0.930

500

V 0.25 −0.002 0.955 0.147 0.937 −0.015 1.000 0.148 0.943

W 0.75 0.025 0.245 0.190 0.920 −0.056 0.298 0.205 0.947

X 1.25 0.304 0.231 0.215 0.647 0.186 0.168 0.256 0.860

1,000

Y 0.25 0.000 0.833 0.102 0.937 −0.014 0.917 0.103 0.923

Z 0.75 0.026 0.139 0.135 0.920 −0.056 0.182 0.147 0.907

AA 1.25 0.302 0.199 0.155 0.443 0.184 0.116 0.183 0.787

Abbreviations: MCSE, Monte Carlo standard error; MSE, mean squared error; SIMEX, simulation-extrapolation.
a MSEs are relative to those computed using a naive model including an error-prone L* with an identical parameter

set.
b Bootstrap coverage was computed using the nonparametric bootstrap percentiles approach.
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CASE STUDY: THE CANADIAN CO-INFECTION

COHORT STUDY

To demonstrate an application of SIMEX-corrected MSMs,
we analyzed data from the Canadian Co-infection Cohort
Study (CCC). The CCC is an ongoing study of over 1,400

individuals coinfected with HIV and hepatitis C virus (HCV)
(29). Persons aged 16 years or older may participate, given
documented HIV infection (enzyme-linked immunosorbent
assay confirmed byWestern blot) and chronic HCV infection
or laboratory evidence of HCV exposure (30). Study visits
generally occur every 6 months (±1 month) and include a

Table 2. Resultsa From a 2-Time-Interval Simulation Study With 4 Scenarios (Rows) in Which the Magnitude of the Confounder L (α1) and the

Standard Deviation of Measurement Error σδ are Varied in Marginal Structural Models Including an Error-Free L and an Uncorrected Error-Prone L*

α1 and
Scenario

Error
Deviation

(σδ)

Model Using SIMEX-Corrected L1
�, L2

�

Direct Correction Indirect Correction

Bias
Relative
MSEb MCSE

95%
Bootstrap
Coveragec

Bias
Relative
MSEb MCSE

95%
Bootstrap
Coveragec

β1 β2 β1 β2 β1 β2 (β1, β2) β1 β2 β1 β2 β1 β2 (β1, β2)

0.50

1 0.25 −0.003 0.009 1.000 1.000 0.097 0.107 0.923, 0.970 −0.006 0.007 1.000 1.000 0.097 0.107 0.927, 0.970

2 1.25 0.187 0.154 0.263 0.552 0.112 0.114 0.600, 0.760 0.158 0.145 0.218 0.507 0.118 0.117 0.717, 0.793

0.75

3 0.25 0.008 0.013 1.000 0.950 0.126 0.137 0.907, 0.933 −0.001 0.008 1.000 0.950 0.127 0.138 0.913, 0.933

4 1.25 0.249 0.213 0.240 0.565 0.127 0.141 0.527, 0.650 0.162 0.189 0.151 0.522 0.150 0.158 0.783, 0.720

Abbreviations: MCSE, Monte Carlo standard error; MSE, mean squared error; SIMEX, simulation-extrapolation.
a A sample size of n = 1,000 was used for all simulations.
b MSEs are relative to those computed using a naive model including an error-prone L* with an identical parameter set.
c Bootstrap coverage was computed using the nonparametric bootstrap percentiles approach.
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liver test profile. A key objective of the CCC is to explore pre-
dictors of liver disease progression among persons living
with HIV/HCV. We analyzed data from a subset of 258 indi-
viduals treated for HCV, for whom at least 1 visit occurred
after completing therapy (Web Figure 4, Web Table 4).

We investigated the relationship between HCV treatment
and progression of liver disease. The exposure of interest
was sustained virological response (SVR) to therapy, a clin-
ically relevant measure of HCV treatment effectiveness and
cure. Ghany et al. (31) define SVR as an undetectable HCV
RNA result in a sensitive polymerase chain reaction assay at
a specified number of weeks following discontinuation of
therapy. We assessed SVR at 12 weeks posttherapy, which
correlates well with SVR at 24weeks and has recently been rec-
ommended as an endpoint for future HCV trials (32–34). The
outcome variable was the aspartate aminotransferase:platelet
ratio index (APRI), a continuous, noninvasive surrogatemarker
of liver fibrosis severity (35). APRI has been validated among
persons coinfected with HIV and HCV (36, 37). We initially
intended to conduct a 2-interval study but chose to consider a
single time interval after identifying collinearity when model-
ing subsequent SVR measures.

The outcome model included the following covariates:
female sex, age, duration of HCV infection, and HCV geno-
type. In the exposure model, we included continuous mea-
sures of current γ-glutamyltransferase (GGT) level, body
mass index (weight (kg)/height (m)2), HIV viral load, and
time since discontinuation of HCV therapy, as well as indi-
cator variables for any reported alcohol consumption or injec-
tion drug use in the past 6 months and HIV therapy status. We
applied both SIMEX approaches to correct measurement error
in GGT. Although GGT is strongly correlated with APRI, re-
cent research suggests that these measures reflect different
disease features. Everhart and Wright (38) argue that GGT is
associated with disease activity, while platelet counts (the de-
nominator of APRI) capture disease severity; they further con-
clude that GGT may be more important prognostically than
either aspartate aminotransferase or alanine aminotransferase

for persons with advanced liver disease. In a more recent
study, Mandorfer et al. (39) determined that GGT was an in-
dependent predictor of failure of HCV treatment to produce
SVR. Note that the exposure variable represents a (biologi-
cal) response, rather than a clinician-driven decision to modify
or initiate treatment, and it is therefore affected by the error-free
GGT value rather than the error-prone measurement available
to the clinician. Our observation period began at the first study
visit after completion of HCV therapy and concluded at the
third posttherapy visit.

We use the following notation:

L1� ¼ log10ðGGTÞ at first (baseline) visit after completing
HCV therapy.

X1 = 1 if SVR is attained between the first and second study
visits; otherwise X1 = 0.

Y = log10(APRI) at the third visit after completing HCV
therapy.

Note that logarithmic transformation of the APRI score in a
standard linear regression model produces estimates of the
median APRI rather than the mean (40). Prior to analyses,
we log-transformed L1� values. For SIMEX, the standard de-
viation of the test error on L1� was specified as 0.247, based on
a recent systematic review (41). We addressed missing values
in covariates using multiple imputation and the mice package
in R (42). Because current HCV therapy may influence APRI
measures, we censored individuals who reinitiated therapy,
and we estimated inverse-probability-of-censoring weights
for those who remained uncensored. We also censored per-
sons with missing information on SVR status at the first or
second study visit. To obtain estimates of the percent decrease
in APRI reported below, we computed 1− 10β. Additional
details on the analysis are available in Web Tables 5 and 6.

RESULTS

Estimates from the naive model (Table 3) ignoring measure-
ment error in GGT suggested a 45% decrease in median APRI
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Figure 3. Influence of misspecification of measurement error variance on relative bias in exposure effect estimates from 2-interval simulations
using naive, direct simulation-extrapolation (SIMEX)-corrected, and indirect SIMEX-correctedmarginal structural models. A) first-interval estimates;
B) second-interval estimates. The dotted line at X = 1.0 is used to indicate the scenario with correctly specified measurement error variance. Data
were generated according to Figure 1B. Note that the axis scales differ between plots.

Covariate Measurement Error and MSMs 255

Am J Epidemiol. 2016;184(3):249–258

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article-abstract/184/3/249/2237540 by M

cG
ill U

niversity Library user on 15 July 2020

http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kww068/-/DC1
http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kww068/-/DC1
http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kww068/-/DC1


among persons attaining SVR, relative to those not experiencing
SVR (β =−0.26, 95% confidence interval (CI): −0.40, −0.11).
The error-corrected models suggested a more modest rela-

tionship between SVR and APRI. The direct SIMEX-corrected
model estimated a 35% decrease in median APRI relative to
persons not experiencing SVR (β =−0.19, 95% CI: −0.38,
−0.01). Similarly, the indirect SIMEX model estimated a 32%
decrease inmedianAPRI associated with SVR (β =−0.17, 95%
CI: −0.36, 0.01). These results appear to support the hypoth-
esis that successful treatment for HCV infection is associated
with a meaningful improvement in liver health relative to per-
sons who are treated but do not attain SVR.

DISCUSSION

We proposed, assessed, and validated 2 approaches to cor-
recting measurement error in time-varying covariates in
MSMs, by adapting Cook and Stefanski’s SIMEX procedure
(18) to this specific setting. Our simulation results suggest
that both the direct and indirect SIMEX approaches largely
reduce bias when exposure depends on the true value of mis-
measured time-varying covariates. This finding is of practical
importance, as indirect correction is supported in several sta-
tistical software packages (43, 44).
SIMEX-based estimators exhibited some bias with increas-

ing measurement error variance and increasing strength of the
covariate-outcome association; however, they provided uni-
formly better coverage than the naive estimators. We observed
only minor differences between the 2 SIMEX approaches,
which produced systematically more accurate estimators than
those from the naive model. These findings and the easier im-
plementation of the indirect approach suggest that the latter
may be recommended for most applications.
Most estimators to which SIMEX has been applied do not

have closed-form solutions, and therefore theoretical proofs
are infeasible; this is true of our proposed SIMEX-based es-
timators also (45–48). Thus, we followed the previous litera-
ture by demonstrating performance by simulation, including
the SIMEX-based estimators’ capacity to reduce bias under
differing assumptions about the “true” data structure.

Our secondary simulations confirmed that ignoring mea-
surement error was a reasonable choice if treatment assign-
ment depended on the error-prone covariate; in this case,
correcting for error introduced bias. However, MSMs are
increasingly being used to estimate the causal effects of
exposures that are neither treatments nor treatment decisions,
where measurement error in time-varying covariates should
be considered, and a reliable estimate of the error variance
is available (49–51). The case study we have presented is
one such example. Our findings support the application of
measurement error models to time-varying covariates within
this context.
We acknowledge several limitations of our study. MSMs are

frequently applied to data collected over many points in time,
including larger numbers of covariates, several of which may
exhibit measurement errors. Due mostly to computational bur-
den, the scenarios we examined were limited to a simplified 2-
interval setting. However, the consistency of simulation results
across a range of relevant parameters suggests that the potential
advantages of SIMEX-correctedMSMs extend tomultiple time
points. Furthermore, practical application of the SIMEX proce-
dure requires that the measurement error variance is known or
can be estimated relativelywell.Wefind it encouraging that sen-
sitivity analyses demonstrated that a small degree of variance
misspecification (<25%) did notmarkedly bias our corrected es-
timates, which remained less biased than the naive estimates
even when we under- or overspecified the error variance by
as much as 50%. This finding should be interpreted cautiously,
as our investigations were limited to simple models fitted to
simulated data (52).
Measurement error in time-varying covariates remains an

important issue that must be carefully considered in any anal-
ysis. When the exposure of interest is based on the true (not
mismeasured) covariate and the measurement error variance
may be reasonably well estimated, the SIMEX procedure is
a useful method with which to address error in time-varying
covariates. Moreover, while several methods for measurement
error correction exist, few are implemented in commonly used
statistical packages; SIMEX is a notable exception. We have
shown how analysts can take advantage of this approach to

Table 3. Association Between a Sustained Virological Response to Hepatitis C Virus Treatment at 12 Weeks

Posttherapy and Progression of Liver Disease, as Measured by the Aspartate Aminotransferase:Platelet Ratio Index,

Canadian Co-Infection Cohort Study, 2003–2014

Variable

Model

Naive
MSMa

Direct SIMEX
Correction

Indirect SIMEX
Correction

β̂ 95% CIb β̂ 95% CI β̂ 95% CI

SVR at third posttreatment visit −0.26 −0.40, −0.11 −0.19 −0.38, −0.01 −0.17 −0.36, 0.01

Female sex −0.09 −0.25, 0.09 −0.12 −0.32, 0.07 −0.08 −0.29, 0.10

Age, per 10 years −0.07 −0.18, 0.03 −0.09 −0.21, 0.03 −0.08 −0.21, 0.04

Duration of HCV infection, per 10 years 0.03 −0.04, 0.09 0.02 −0.07, 0.11 0.03 −0.07, 0.12

HCV genotype of 2/3/4 0.00 −0.19, 0.19 0.02 −0.24, 0.28 −0.03 −0.26, 0.25

Abbreviations: CI, confidence interval; HCV, hepatitis C virus; MSM, marginal structural model; SIMEX,

simulation-extrapolation; SVR, sustained virological response.
a The naive MSM does not correct for measurement error in log10(γ-glutamyltransferase).
b All 95% CIs were computed by means of the nonparametric bootstrap percentiles approach.
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correct measurement error in time-varying covariates within
the MSM framework.
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