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The missing cause approach to
unmeasured confounding in
pharmacoepidemiology
Michal Abrahamowicz,a,b*† Lise M. Bjerre,c,d,e

Marie-Eve Beauchamp,b Jacques LeLorierf,g and Rebecca Burnea

Unmeasured confounding is a major threat to the validity of pharmacoepidemiological studies of medication
safety and effectiveness. We propose a new method for detecting and reducing the impact of unobserved con-
founding in large observational database studies. The method uses assumptions similar to the prescribing
preference-based instrumental variable (IV) approach. Our method relies on the new ‘missing cause’ principle,
according to which the impact of unmeasured confounding by (contra-)indication may be detected by assessing
discrepancies between the following: (i) treatment actually received by individual patients and (ii) treatment that
they would be expected to receive based on the observed data. Specifically, we use the treatment-by-discrepancy
interaction to test for the presence of unmeasured confounding and correct the treatment effect estimate for the
resulting bias. Under standard IV assumptions, we first proved that unmeasured confounding induces a spurious
treatment-by-discrepancy interaction in risk difference models for binary outcomes and then simulated large
pharmacoepidemiological studies with unmeasured confounding. In simulations, our estimates had four to six
times smaller bias than conventional treatment effect estimates, adjusted only for measured confounders, and
much smaller variance inflation than unbiased but very unstable IV estimates, resulting in uniformly lowest root
mean square errors. The much lower variance of our estimates, relative to IV estimates, was also observed in an
application comparing gastrointestinal safety of two classes of anti-inflammatory drugs. In conclusion, our miss-
ing cause-based method may complement other methods and enhance accuracy of analyses of large
pharmacoepidemiological studies. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

Accurate assessment of adverse effects of drugs is a methodologically challenging issue of major impor-
tance for public health. To ensure adequate sample size and follow-up duration and avoid restrictive in-
clusion criteria of randomized trials, adverse drug effects are typically assessed using large
administrative health databases [1,2], which do not record lifestyle and clinical characteristics often af-
fecting both the treatment choice and the adverse event risk [3]. The resulting unobserved confounding
by indication is a major threat to the validity of observational pharmacoepidemiological studies of drug
safety [4–6]. Therefore, it is important to develop and validate methods to control for, or at least reduce,
bias due to unmeasured confounding [7].

A widely used approach to deal with unmeasured confounding involves instrumental variables
(IV) [8–11]. Brookhart et al. adapted this approach to pharmacoepidemiology by defining the IV
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as the physicians’ subjective prescribing preferences [12,13]. Such preferences are well
documented in drug utilization studies [14–16]. The prescribing preference-based IV approach
is increasingly employed in pharmacoepidemiology [14, 17,18] and has stimulated further meth-
odological investigations [19–23]. Under the standard IV assumptions [8, 24], the prescribing
preference-based IV estimates remove even strong unmeasured confounding [22, 25]. However,
the associated variance inflation implies that the mean square error of IV estimates may be higher
than the mean square error of ‘conventional’, biased but much more stable, estimates that adjust
only for measured confounders [25]. Furthermore, even in very large database studies, it may be
difficult to establish whether IV estimates are significantly different from the conventional
estimates [20, 26–28], which may make researchers reluctant to base their conclusions on the less
stable IV estimates [23, 29].

We propose a new method that may help detect and reduce the impact of unmeasured confound-
ing. We adapt most of the standard IV assumptions [8] and, similar to IV applications in
pharmacoepidemiology [12, 18], rely on prescribing preferences. However, in contrast to conven-
tional IV analyses, in the final outcome model, we do not replace the actual treatment by the IV.
Section 2 describes our conceptual framework and outlines an analytical proof of the underlying
‘missing cause’ principle. Section 3 describes how our method is implemented. Simulations in
section 4 assess the performance of our estimates and compare them with the prescribing
preference-based IV estimates. Section 5 illustrates an application of the missing cause method
in a real-life pharmacoepidemiological setting. A discussion of the implications and limitations
of our work concludes the manuscript.

2. Conceptual framework

2.1. The missing cause principle

Detection of unobserved confounding bias requires some analytical ‘detective’ investigation. Detective
work often focuses on apparently unexplained discrepancies between the observed facts and the rational
expectations to deduce unobserved causes or motives for the crime. We adapt this line of investigation to
pharmacoepidemiology and compare observed data on treatment actually received by individual patients
with their expected treatment, to detect possible discrepancies, which may help unmask and correct for
unobserved confounding.

Consider two hypothetical patients who have identical values for all measured covariates but received
different treatments. In conventional multivariable analyses, which only match on or adjust for the
observed variables, any difference between the outcomes of the two patients will be attributed to the
difference in their respective treatment. However, there should be some reason why two apparently
‘identical’ patients received different treatments. This may be due to different subjective prescribing
preferences of their physicians and/or some objective differences in the patients’ characteristics not re-
corded in the database, which would represent the ‘missing cause(s)’ to justify the different treatment
choices. A failure to account for such unobserved differences will induce unmeasured confounding bias
if the missing causes are also associated with the outcome.

We now introduce the missing cause principle, which formalizes the previous reasoning. In general,
the observed treatment decisions depend on a combination of patients’ characteristics, whether re-
corded or not in the study database, and physicians’ subjective prescribing preferences. For individual
patients, we cannot determine if some unrecorded variables did affect their treatment (e.g., choice of
drug A versus B). However, our missing cause principle postulates that the probability that a given pa-
tient’s treatment has been partly chosen based on unobserved characteristics increases if the assigned
treatment appears inconsistent with the treatment expected based on the patient’s observed character-
istics and his or her physician’s prescribing preference. Physicians’ preferences may be approximately
quantified based on the observed treatments prescribed to their patients [12, 15, 22]. Assuming that
treatment decisions are rational, patients with higher discrepancy between observed and expected
treatments are more likely to have some unobserved characteristics, which may represent the missing
causes for their treatment assignment. Accordingly, the missing cause principle implies that the prev-
alence of unobserved characteristics associated with the choice of drug A increases for those users of
drug A for whom this treatment choice appears more discrepant from the expectations based on ob-
served characteristics and their physicians’ preferences. In contrast, the presence of unobserved char-
acteristics associated with drug A will be less likely among more discrepant users of drug B, as such
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1001–1016
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characteristics would further decrease the probability of receiving drug B. Accordingly, the difference
in the prevalence of unobserved determinants of treatment choice between the groups of patients pre-
scribed drug A versus drug B will tend to increase with increasing discrepancy between the observed
and the expected treatments.

Notice that the difference in the distributions of unobserved missing causes of treatment choice be-
tween users of the two drugs will entail a confounding bias whenever these unobserved characteristics
are also related to the outcome, and the resulting bias will increase with increasing difference in the
prevalence of such unmeasured confounders.
1003
2.2. Proof of the missing cause principle

We now provide a more formal proof of the missing cause principle for (linear) risk difference (RD)
models, typically employed to implement IV methods in pharmacoepidemiology [12, 18, 22]. We adopt
the classic IV assumptions [8, 13] and discuss them briefly later in the text using the terminology of
Angrist et al. [8].

(1) Stable unit treatment value assumption implies that the potential outcome of a patient does not
depend on the treatment assigned to any other patient, which seems rather incontestable in our
context.

(2) Exclusion restriction assumption implies that physicians’ prescribing preferences are not in-
dependently associated with the outcome, except for their effects mediated through treatment
assignment. The practical implications of this assumption are that prescribing preferences are
as follows: (i) independent of both unmeasured and measured patients’ characteristics, in-
cluding potential confounders of the treatment effect, and (ii) not correlated with the quality
of care provided by different physicians, which may affect the outcomes of their patients re-
gardless of patients’ characteristics.

(3) Nonzero average causal effect assumption implies that the probability of receiving a given
treatment varies among patients with identical characteristics but treated by different physicians.
This is supported by well-documented subjective prescribing preferences and lies at the core of
the IV approaches in pharmacoepidemiology [9, 12, 14,15,22, 26].

Furthermore, similar to IV applications in pharmacoepidemiology [12, 18], we also assume that unob-
served confounders do not act as modifiers of the treatment effect.

Finally, in our proof and simulations in section 4, we do not rely on the monotonicity assumption [8],
whose plausibility in the context of prescribing preferences has been questioned [30]. Indeed, in simu-
lations, individual treatments are randomly generated from the patient-specific Bernoulli distribution
with probability of treatment A=1 that depends on both patients’ characteristics and their physician’s
prescribing preference [22, 25]. Thus, while the expected probability of receiving treatment A=1 is a
monotone function of physicians’ preferences, actual treatments assigned to individual patients may
be inconsistent with the monotonicity assumption because of sampling variance.

The impact of violating the exclusion restriction and the assumption that treatment effect is not
modified by unobserved confounders [13], in which case both are difficult to verify empirically, is
investigated in simulations reported in section 4.4.

Under the previous assumptions, we outline a formal proof of the missing cause principle. Section
A of the Supporting Information provides a detailed proof. We consider a hypothetical study compar-
ing binary outcomes Y between users of two treatments (A=1 versus A=0). Both A and Y arise from
their respective RD models, and both are affected by a binary unmeasured confounder U. Consistent
with the nonzero average effect assumption [8], A depends also on an observed continuous variable Z,
which is not independently associated with either Y or U (exclusion restriction [8]), that is, may serve
as an instrument. In the analyses, both treatment and outcome models are correctly specified, except
for (unobserved) U. We define the treatment discrepancy D as the probability, estimated conditional
on Z, that a subject will receive the treatment opposite to his or her actual treatment. Then, in section
A of the Supporting Information, we prove that the difference in the prevalence of the unobserved
confounder U between subgroups A=1 versus A=0, P(U=1|A=1,D)�P(U=1|A=0,D), increases
monotonically with increasing treatment discrepancy D. Thus, if U=1 is associated with higher risk,
the estimated RD also increases with increasing D, which validates the missing cause principle. In
contrast, the RD will not change systematically with increasing D if U is not associated with either
A or Y.
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1001–1016
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3. Methods

We propose a new method for detecting and reducing the impact of unobserved confounding, which re-
lies on the missing cause principle, for linear regression modeling of either the effect of a binary treat-
ment on a continuous outcome or a RD for a binary outcome. Its implementation involves four steps.

Step 1 Estimating the expected probability of treatment

To estimate the expected probability of patient j (j=1, …, ni) of physician i (i=1, …, m) receiving
treatment Aij=1, we fit the multivariable linear RD model to data on all patients:

PðAij ¼ 1 Xij;1;…;Xij;p; MijÞ ¼ ∑
p

k¼1
βkXij;k þ γiMij þ εij

���� (1)

where Xij,k (k=1, …, p) is the value of covariate Xk for patient j of physician i, εij is a Gaussian error
term, and Mij (i=1, …, m) are m dummy indicators of individual physicians (Mij=1 for all patients of
physician i). Accordingly, γi estimates the preference of the ith physician for A=1, independent of
patients’ characteristics. To avoid the violation of the positivity assumption, the estimated probabilities
below 0.001 or above 0.999 are truncated and replaced by the respective boundary value.

Step 2 Estimating treatment discrepancy

Next, we estimate the discrepancy Dij between the treatment Aij actually received by a patient and his
or her expected probability of receiving this treatment, estimated in equation 1:

Dij ¼
1� P ̂ Aij ¼ 0

� � ¼ P ̂ Aij ¼ 1
� �

1� P ̂ Aij ¼ 1
� � for Aij ¼ 0

for Aij ¼ 1

(
(2)

Higher values of Dij in equation 2 indicate more ‘discrepant’ patients.

Step 3 Modeling and testing the treatment-by-discrepancy interaction in the outcome model

Next, we expand the outcome model to account for potential effects of the treatment discrepancy Dij

estimated in equation 2. Based on Lemma 2 and Theorem 1 (see section A of the Supporting Informa-
tion), we assume that, in the presence of unmeasured confounding, the risk of a binary outcome P(Yij=1)
(or the expected value of a continuous outcome) changes monotonically with increasing Dij but in the
opposite direction in the two treatment groups. This implies an interaction f(Dij)Aij between the treatment
indicator Aij and a monotone function of discrepancy f(Dij). For example, for binary outcomes, we fit the
following multivariable RD model:

P Yij ¼ 1jXij;1;…;Xij;p;Aij;Dij

� � ¼ α0 þ ∑
p

k¼1
αXkXij;k þ αAAij þ ηf Dij

� �þ θf Dij

� �
Aij þ εij (3)

where Yij is the patient’s outcome, conditional on his or her p observed covariates (Xij,1,…, Xij,p) and the
received treatment Aij, and εij is a Gaussian error. Equation 3 does not include the physician indicators
Mij because prescribing preferences are assumed to have no independent effects on the outcome
[12,13]. A similar model is fitted to predict the expected value of a continuous outcome.

In real-life applications, the functional form f(Dij) for the effect of increasing Dij on the outcome is
analytically intractable, as it depends on the (unknown) prevalence of unmeasured confounders and their
impact on the treatment choice. Yet section 2.2 demonstrates that f(Dij) is monotone. In simulations in
section 4, using f(Dij) = log(Dij+1) improved the accuracy of the estimates relative to alternative simple
monotone functions.

In equation 3, the coefficient ɳ for discrepancy f(Dij) quantifies its impact on P(Yij=1) in group Aij=0,
while the coefficient θ for the treatment-by-discrepancy interaction f(Dij)Aij captures the differential ef-
fect of Dij for group Aij=1. According to section 2.2, under the assumptions stated therein, the effect of
discrepancy Dij should vary across the two treatment groups if both the treatment choice and outcome
are affected by unmeasured confounders. Therefore, we propose to test the f(Dij)Aij interaction in equa-
tion 3 with the model-based two-tailed t-test at α=0.05. In equation 3, adjusted RD for Aij=1 versus
Aij=0 equals αAAij+ θf(Dij)Aij. Thus, the rejection of H0: θ=0 implies that the treatment effect does
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1001–1016
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change systematically with increasing discrepancy Dij, which, according to Theorem 1, indicates the
presence of unobserved confounding.

Step 4 Estimating the corrected treatment effect

Equation 3 may also help correct the treatment effect estimate for unobserved confounding. Given the
f(Dij)Aij interaction, the coefficient αA for Aij in equation 3 estimates the treatment effect (adjusted for
observed covariates) for hypothetical patients with f(Dij) = 0. It is convenient to define f so that f(0)
= 0, which holds, for example, for f(Dij) = log(Dij+1). Then, αA estimates the adjusted treatment effect
among patients who have the following: (i) the same values for all observed covariates and (ii) estimated
Dij=0, that is, the estimated probability of receiving their actual treatment is equal to 1.

Yet, according to equation 1, different patients with the same covariate vector will be assigned either
P ̂ Aij ¼ 0
� � ¼ 1 or P ̂ Aij ¼ 1

� � ¼ 1 only if their respective treatments are entirely determined by their
physicians’ deterministic preferences, that is, independent of individual characteristics, whether ob-
served or not. Thus, assuming that physicians’ preferences are not independently associated with the
outcome [12], αA in equation 3 approximates the treatment effect estimated from a hypothetical
cluster-randomized trial, in which all patients of a given physician are randomized to either Aij=1 or
Aij=0. In conclusion, αA estimated in our interaction model in equation 3 should approximate the unbi-
ased (causal) treatment effect, not affected by unmeasured confounders.

4. Simulation studies

4.1. Simulation design and data generation

To evaluate our method’s performance, we simulated hypothetical studies comparing the risk of an ad-
verse event between two drugs (A=1 versus A=0) in large databases, in the presence of unmeasured
confounding. We assumed m prescribing physicians (m=400, 600, or 1000), with 10 to 50 patients
per physician, implying total N of about 12,000 to 30,000.

For each patient, we generated two observed confounders (continuous X1 and binary X2) and an un-
measured continuous confounder X3. Consistent with stage 1 of the two-stage least squares (2SLS) IV
estimation [12], the binary treatment was generated from a linear RD model. For patient j (j=1, …,
ni) of physician i (i=1, …, m), P(Aij=1) depended on Xij,1–Xij,3 and on the latent physician preference
γi (see section B.1.2 of the Supporting Information):

P Aij ¼ 1jXij;1;Xij;2;Xij;3; γi
� � ¼ ∑

3

k¼1
βkXij;k þ γi (4)

In different simulation scenarios, either a continuous or a binary outcome was generated conditional
on Xij,1–Xij,3 and on the received treatment Aij but independent of the physicians’ preferences [12]. The
binary outcome (adverse event) was generated from the RD model, consistent with stage 2 of the 2SLS
estimation [12]:

P Yij ¼ 1jXij;1;Xij;2;Xij;3;Aij

� � ¼ α0 þ ∑
3

k¼1
αkXij;k þ αAAij (5)

Continuous, normally distributed outcome Yij was generated from the multivariable linear model:

Yij ¼ α0 þ ∑
3

k¼1
αkXij;k þ αAAij þ εij (6)

with normally distributed error εij.
Across the simulated scenarios, we varied the following: (i) N; (ii) assumptions regarding physicians’

preferences (γi in equation 4); (iii) true RD for treatment (αA in equations 5 and 6); and (iv) the strength
of the unmeasured confounding, by varying the parameters for unobserved X3, that is β3 in equation 4
and/or α3 in equation 5 or 6.

In main simulations, we assumed the following: (i) classic IV assumptions hold [8]; (ii) physicians’
preferences do not change over time; and (iii) in both treatment and outcome models, respectively equa-
tions 1 and 3, the effects of measured covariates, physicians’ preferences (for the treatment model), and
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1001–1016
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treatment (for the outcome model) are correctly specified. Section 4.4 summarizes the methods and re-
sults of sensitivity analyses, which investigated the impact of violation of these assumptions.

Details of data generation methods and underlying assumptions are given in section B.1 of the
Supporting Information, where Table A.1 shows all relevant parameters. For each simulated scenario,
we generated 1000 independent random samples.

Simulations were performed with R version 3.1.1 [31]. The program is available in section D of the
Supporting Information.

4.2. Analyses of simulated data

Estimation models: Each sample was analyzed using alternative multivariable linear regression models,
including RD models for binary outcomes [12]. All models ignored the unmeasured confounder X3 and
adjusted for X1 and X2. Conventional model 1 included only the treatment indicator A, X1, and X2. Two
prescribing preference-based IV models were estimated using the 2SLS approach [8]. The IV was de-
fined as follows: (i) treatment received by the previous patient of the same physician [12] in binary
IV model 2 and (ii) the proportion of all previous patients of the same physician prescribed treatment
A=1 [22] in continuous IV model 3. Both models 4 and 4A implemented our interaction-based model
in equation 3, with f(Dij) = log(Dij+1) in model 4 versus f(Dij) =Dij in model 4A.

Power to detect unmeasured confounding was estimated with the proportion of simulated samples in
which the 95% CI for the model-specific treatment effect excluded the naïve conventional model 1
treatment estimate. This avoided the analytical difficulties in using, for example, the Durbin–Wu–
Hausman test [32–34] for IV analyses of binary outcomes [23, 29]. In addition, for our models 4
and 4A, we estimated how often the treatment-by-discrepancy interaction in equation 3 was significant
at two-tailed α=0.05 (step 3 of section 3).

4.3. Simulation results

Using f(Dij) = log(Dij+1) in equation 3 systematically reduced bias and root mean square error (RMSE)
of model 4 estimates, compared to model 4A with f(Dij) =Dij (data not shown). Therefore, we present the
results only for f(Dij) = log(Dij+1). Across the simulated scenarios, the estimated treatment probabilities
fell outside the [0.01, 0.99] interval and, thus, had to be truncated for only 0% to 4.4% of subjects.

Table I compares the power to detect unmeasured confounding for CI-based tests (described in
section 4.2) for models 2–4 and the interaction test for model 4 across 12 simulation scenarios outlined
in columns 2–4 (Table A.1 in the Supporting Information provides details). With no unmeasured con-
founding, all type I error rates were close to nominal 5% (scenarios 1 and 2). In the other scenarios,
the power was systematically the lowest for the binary IV model 2 (column 6) and the highest for our
model 4 (columns 8 and 9). Power increased with sample size (column 3) and strength of unmeasured
confounding (column 4) but was only moderate even in very large datasets for both IV models (columns
6 and 7). The proposed test of the treatment-by-discrepancy interaction improved the power, over the
CI-based tests, without inflating type I error (last column).

Table II compares the point estimates of adjusted treatment effect. Both IV estimates were unbiased
(data not shown), as expected given that data were generated in accordance with the standard IV as-
sumptions [8]. The bias of model 4 estimates was small, below or close to 10%, and four to six times
lower than the bias of the conventional model 1 estimates (columns 5 versus 4, scenarios 3–12). Binary
IV estimates were extremely unstable, with two to four times larger standard deviations than model 4
(column 7), while continuous IV model 3 yielded standard deviations usually about 60% higher than
model 4 (column 8). The RMSE ratios for both IV models, relative to model 4, were generally much
above 1 (columns 10 and 11), indicating that our estimates were, on average, substantially closer to
the true treatment effect. In scenarios 3–12 with unmeasured confounding, our model 4 yielded the
lowest RMSE, at least 20% below the conventional model 1 (column 9), but its relative advantages
over alternative models reflect the bias–variance trade-off: biased but stable model 1 estimates per-
formed worst in large databases with strong unmeasured confounding, where unbiased IV estimates
were less affected by variance inflation.

Table III focuses on the accuracy of inference about the treatment effect. As expected, both unbiased
IV models 2 and 3 yielded uniformly correct coverage of the 95% CIs (data not shown), while conven-
tional model 1 had extremely low coverage in presence of unmeasured confounding (column 8,
scenarios 3–12). Model 4 yielded coverage rates above 90% (column 9), except for the continuous
outcome scenario 12, where a very narrow CI, due to N=30,000, resulted in suboptimal 84% coverage.
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1001–1016
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Yet, the CIs for model 4 were substantially more precise than for IV-based models 2 and 3, which
yielded much larger standard errors (columns 5 and 6 versus 7). Our approach also offered excellent
power to reject the null hypothesis of no treatment effect (column 13), in contrast to generally low power
for binary IV model 2 (column 11) and occasionally even for continuous IV model 3 (column 12,
scenarios 2, 3, 5, and 8).

4.4. Sensitivity analyses

To assess the robustness of the previous findings and conclusions, Table IV reports the results of addi-
tional simulations. Each scenario shown in Table IV modified specific assumption(s) or parameter(s)
used to generate data for the original scenario 6 of Tables I-III (see column 2 of Table IV, with details
in section B.2 in the Supporting Information).

Scenarios 6a–6c show that even in the case of effect modification by either an observed or unobserved
confounder, both IV model 3 and our model 4 yielded as unbiased estimates of the average (across the
values of the effect modifier) treatment effect as in scenario 6. Importantly, when unmeasured X3 acted
as an effect modifier but not a confounder, our interaction-based test of confounding had a correct type I
error rate (scenario 6c, column 3). Furthermore, the results were not affected by different
misspecifications of the model used to estimate the expected treatment, including ignoring an interaction
or a nonlinear effect of an observed covariate or including variables that do not affect treatment
(scenarios 6d–6f). In contrast, the results changed when estimating the treatment probability with the
(misspecified) linear RD model when treatment was in fact generated from the logistic model (scenario
6g) or assuming that physicians’ prescribing preferences either were much weaker or changed over
time (scenarios 6h and 6i). The variance increased for models 2–4 and the power of our interaction-
based test for detecting unmeasured confounding decreased substantially (column 3), even if it was
still higher than for CI-based tests (section 4.2) for IV models (data not shown). The bias of model
4 estimates also increased (column 6), but RMSEs of all models were at least 50% higher than for
model 4 (columns 7–9).

Scenario 6j shows that lowering the number of patients in physicians’ practices from 10–50 to 2–50
had only a minor impact. However, reducing the maximum number of patients substantially, from 50 to
20 (scenarios 6k and 6l), decreased the precision of physicians’ preferences estimates in equation 1. This
implied less accurate estimation of discrepancies in equation 2, resulting in increased bias of model 4
estimates, even if this bias was systematically at least 50% smaller than for conventional model 1
(columns 6 versus 4 of Table IV). In scenario 6l, the bias and coverage of our estimates improved if
patients from smaller physicians’ practices (<10 patients) were excluded from the analyses. In all
scenarios 6j–6l, all models yielded RMSEs at least 39% higher than our model 4 estimates (columns 7–9).

Finally, scenarios 6m–6p demonstrated that in situations where the exclusion restriction assumption
[8] was violated, both the IV models 2 and 3 and our model 4 yielded biased estimates, with no
systematic difference between these three models. The bias varied from below 15% to above 50%
depending on whether the distribution of unmeasured confounder X3 varied slightly or substantially
(intraclass correlation of 0.012 or 0.155) at random, across physicians’ practices (scenarios 6m and
6n). The bias became even more dramatic if the mean value of X3 was correlated with physicians’
preferences (scenarios 6o and 6p). Thus, the exclusion restriction violation affects our model 4
estimates as strongly as IV estimates [8, 13, 30].

5. Risk of gastrointestinal events in cyclooxygenase-2 versus nonsteroidal
anti-inflammatory drug users

To illustrate the performance of models 1–4 (section 4) with real data, we compared the risk of
gastrointestinal (GI) side effects between users of more recently introduced cyclooxygenase-2 (COX-2)
inhibitors versus traditional nonsteroidal anti-inflammatory drugs (NSAIDs). All models adjusted for the
same a priori selected observed potential confounders. Section C of the Supporting Information provides
details of study design, definitions of exposure, outcome and confounders, and detailed results.

During the 6-month follow-up, 33.8% (1513/4475) of COX-2 versus 27.4% (1184/4318) of NSAID
users had a GI event, yielding unadjusted RD=6.4% (95% CI: 4.5%, 8.3%). However, when adjusted
for systematically worse values of several observed GI risk factors among COX-2 users (see Table
A.2 of the Supporting Information), the conventional multivariable model 1 suggested lower GI risks
for COX-2 users (adjusted RD=�1.9% (�3.5%, �0.3%)). Individual physicians’ treatment preferences
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1001–1016
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varied substantially (see section C.3 of the Supporting Information). Both IV models 2 and 3 suggested
that GI risk increases for COX-2 users but with very wide CIs (Table V). Model 4 yielded a substantially
more precise estimate and suggested a risk reduction (adjusted RD=�2.6% (�8.4, 3.2%)), similar to the
modest risk reduction reported by meta-analyses of relevant trials [35,36] and our conventional
RD=�1.9%. Indeed, both the inclusion of RD=�1.9% in all 95% CIs and p-value=0.75 for our inter-
action test (Table V) consistently indicated the absence of marked unmeasured confounding, suggesting
that the extensive list of measured confounders, adjusted for in our multivariable analyses, might have
accounted for possible confounding by indication.
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6. Discussion

Instrumental variables, based on prescribing preferences, represent one of the most promising approaches to
deal with unmeasured confounding in pharmacoepidemiology [8, 13, 15]. In linear models, with a directly
observable instrument, which meets standard assumptions, 2SLS IV estimates are asymptotically efficient
[37]. However, the IV defined as prescribing preferences is latent, and efficiency of alternative estimators
may vary depending on how the available information is used. Rather than replacing the observed treatment
by the instrument [12,13], or conditioning it on the instrument, which could exacerbate the unmeasured
confounding bias [38], our missing cause approach relies on treatment interaction with discrepancy
between observed versus expected treatments. Thus, it may be considered an adaptation of the two-stage
residual inclusion IV approach proposed by Nagelkerke [39,40] to pharmacoepidemiological database
studies of the effect of a binary treatment on a binary outcome, in which the instrument (prescribing
preferences) is not directly observable and, thus, needs to be estimated. Terza et al. provide analytical
and simulation-based results suggesting that, in nonlinear models, the two-stage residual inclusion
estimates, which rely on residuals from the model regressing the observed exposure on the instrument,
may be more accurate than standard IV 2SLS estimates [40].

The main advantages of our missing cause-based estimates are that they substantially reduce both the
bias of conventional estimates and the variance of unstable but unbiased IV estimates. In almost all
simulations, regardless of whether standard IV assumptions were met, our treatment effect estimates
had the lowest RMSEs (Tables II and IV) but at the price of a small bias and reduced coverage (Tables III
and IV). Such bias-variance trade-off is typical of methods proposed to reduce the variance of unbiased
but unstable estimates, including inverse probability of treatment weight stabilization or truncation in
marginal structural models [41–44]. The lowest RMSE implies that in applications, where unmeasured
confounding is expected [45,46], our estimates will be, on average, closer to the true unknown treatment
effect than IV or conventional estimates. In the COX-2 inhibitors versus NSAIDs example, our missing
cause estimate, relative to IV estimates, was both more consistent with clinical trials results [35,36] and
more precise.

Sensitivity analyses indicated that heterogeneity of treatment effect and misspecification of covari-
ate effects in the model used to estimate the expected treatment had no material impact on our esti-
mates (Table IV). Whereas weaker prescribing preferences and/or reduced number of patients per
physician resulted in slightly increased bias of our estimates, the RMSE remained much lower than
for IV estimates. However, in contrast to the binary IV model [8], the accuracy of our missing
cause-based estimates decreased if physicians’ prescribing preferences changed over time, although
they still yielded the best RMSE (Table IV, scenario 6i). In applications with frequent changes in pref-
erences, the change-point approach proposed for IV analyses [22] may be adapted to the missing cause
framework.

We recognize that our method cannot deal with some complex data structures. Simulated scenarios
(6m–6p) show that the impact of exclusion restriction violation on our estimates is as strong (Table IV)
as its well-documented impact on IV estimates [8, 13, 30]. This critical assumption is violated even if the
distributions of unmeasured confounders vary at random, but substantially, across physician practices.
Physicians with higher mean values of unmeasured risk factors associated with higher probability of pre-
scribing a given drug will be estimated, on average, to have stronger preferences for this drug. This in-
duces a spurious association between estimated prescribing preferences and the outcome, independent of
the treatment received by individual patients. Whereas the exclusion restriction assumption is not di-
rectly verifiable in applications, it may be useful to assess if the distributions of measured risk factors,
separately within patients prescribed each drug, show important clustering by physician and/or correlate
with estimated physicians’ preferences [13].
Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 1001–1016



Table V. Differences in risk of gastrointestinal events between cyclooxygenase-2 inhibitor versus nonsteroidal
anti-inflammatory drug users.

Model

Treatment RD (%) for COX-2
versus NSAID users (95% CI)1

Log(D + 1)
(95% CI)2

Interaction
log(D + 1)*COX-2

(95% CI)3

Interaction
p-value

Column 1 Column 2 Column 3 Column 4 Column 5

Unadjusted 6.4 (4.5, 8.3) — — —
Conventional model 1 �1.9 (�3.5, �0.3) — — —
Binary IV model 2 3.3 (�12.7, 19.3) — — —
Continuous IV model 3 2.5 (�6.2, 11.3) — — —
Interaction-based model 4 �2.6 (�8.4, 3.2) 6.4 (�2.9, 15.7) 2.5 (�12.9, 17.8) 0.751

RD, risk difference; COX-2, cyclooxygenase-2; NSAID, nonsteroidal anti-inflammatory drug; CI, confidence inter-
val; IV, instrumental variable.
1Estimated (adjusted) risk difference (positive values indicate higher risk for COX-2 inhibitor users).
2Effect of discrepancy f(D) = log(D + 1) among NSAID users (A = 0); see equation 3.
3Effect of interaction between f(D) and the indicator of COX-2 inhibitor use (A = 1); see equation 3.
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In simulations, the test of treatment-by-discrepancy interaction, based on equation 3, had systematically
better power to detect unobserved confounding than tests based on the IV models (Table I). However, the
power to detect moderate unmeasured confounding was adequate only in very large databases, partly
reflecting the generally low power of interaction tests [47,48]. Furthermore, because the power of interac-
tion tests depends on the variance of both variables, assuming weaker physicians’ preferences reduced the
power of all tests and increased the variance of our and IV estimates [25]. In conclusion, a significant
treatment-by-discrepancy interaction likely reflects important unobserved confounding, but a nonsignifi-
cant interaction does not exclude a moderate bias. In the latter case, comparison of alternative estimates,
together with substantive considerations regarding the plausibility and expected direction of confounding
bias, may help interpret the results.

Clearly, further analyses of real-life data and additional simulations, with a wider range of underlying
assumptions, are necessary to fully assess the practical usefulness and validity of the proposed missing
cause method. Future empirical studies should also assess the distributions of prescribing preferences
and help better understand their determinants. In applications, CIs for treatment effects estimated with
our interaction model in equation 3 and IV models should be based on bootstrap resampling, to account
for the dependence of the estimates on regressors estimated from the same data: Dij in equation 3 or IV.

The unobserved confounding problem is too complex to expect any single method to detect and re-
move, or even largely reduce, its impact in most real-life pharmacoepidemiologic analyses. Therefore,
future studies may consider using our missing cause-based method, along with IV [12, 18, 22,23] and
other recent methods, including high-dimensional propensity scores, propensity score calibration, mar-
ginal structural models or bias sensitivity analyses (e.g., [49–53]). Careful interpretation and comparison
of both results and formal properties and limitations of the alternative methods, together with substantive
insights, will then help derive more accurate conclusions and assess their robustness.
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