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ABSTRACT
Purpose Pharmaco-epidemiology increasingly investigates drug–drug or drug–covariate interactions. Yet, conditions for confounding of
interactions have not been elucidated. We explored the conditions under which the estimates of interactions in logistic regression are affected
by confounding bias.
Methods We rely on analytical derivations to investigate the conditions and then use simulations to confirm our analytical results and to
quantify the impact of selected parameters on the bias of the interaction estimates.
Results Failure to adjust for a risk factor U results in a biased estimate of the interaction between exposures E1 and E2 on a binary outcome
Y if the association between U and E1 varies depending on the value of E2. The resulting confounding bias increases with increase in the
following: (i) prevalence of confounder U; (ii) strength of U–Y association; and (iii) heterogeneity in the association of E1 with U across
the strata of E2. A variable that is not a confounder for the main effects of E1 and E2 may still act as an important confounder for their
interaction.
Conclusions Studies of interactions should attempt to identify—as potential confounders—those risk factors whose associations with one
of the exposures in the interaction term may be modified by the other exposure. Copyright © 2015 John Wiley & Sons, Ltd.
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Pharmaco-epidemiology increasingly investigates drug–
drug interactions1–4 or interactions between drug expo-
sure and some users’ characteristics.5,6 Yet, interaction
assessment is methodologically challenging.7–13 Knol
et al. reported considerable between-study variation re-
garding the methods to assess interaction and present
the results; although they discussed several methodolog-
ical issues, they did not discuss the issue of potential
confounding of interaction estimates.13 Similarly, other
methodological papers on interaction and subgroup anal-
yses did not discuss the conditions for unbiased estima-
tion8–11 or even mention the issue.14 This is surprising,
given the paramount importance of confounding of main
effects in epidemiological research.15

We screened 30 articles that investigated interac-
tions, published in leading epidemiological and clini-
cal journals: only six mentioned potential confounding
bias, and all of these relied on concepts borrowed from
assessment of confounding of main effects.16–22 How-
ever, the conditions for confounding of main effects
may not necessarily apply to confounding of interaction
between two exposures.
This paper relies on both algebraic derivations and

simulations to explore conditions under which a fail-
ure to adjust for a variable induces confounding bias
in the estimated effect of an interaction between two
other variables in logistic regression. In this article,
we adapt a pragmatic definition of confounding as a
systematic difference between the estimate of the rela-
tionship of interest and the corresponding true param-
eter, which is due to a failure to account for other
variable(s) but cannot be explained merely by the
noncollapsibility of the odds ratios (ORs). In other
words, while noncollapsibility implies that the logistic
regression-based ORs are biased toward the null
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whenever the model fails to adjust for an important
risk factor,16,23–25 the presence, direction, and strength
of confounding depend also on the relationships
between this risk factor and the variables whose effects
are being estimated.26,27

CONDITIONS FOR CONFOUNDING OF
INTERACTION

Basic definitions and concepts

We consider the inter-relations of four variables: E1
and E2 are two binary exposures, whose potential in-
teraction for a binary outcome Y is investigated, and
U is a binary covariate, a potential confounder of the
interaction. Our analytical and simulation results, pre-
sented in this manuscript, apply to any exposure or
treatment, and any covariates that satisfy the earlier
assumptions.
The main goal of interaction analyses may be to

assess either the joint effect of two exposures or
whether the effect of a single exposure is modified
by another variable. Joint effects are of interest if,
for example, E1 and E2 represent use of two specific
drugs, and the E1*E2 interaction is tested primarily
to assess if their effects are independent of each other
(no interaction) or synergistic. Effect modification
analyses may investigate, for example, whether, and
how, the effect of exposure to the drug represented
by E1 varies depending on the value of some binary
characteristic such as sex, represented by E2. While
there are conceptual differences between these two
paradigms, in practice, both rely on the valid estima-
tion of, and statistical inference about, the parameter
for the E1 *E2 interaction. Our analytical and simu-
lation results apply to both types of interaction
analyses.
We assume that U is not on the causal pathway

between either E1 or E2 and Y. In our notation:
ORE1�Y refers to the OR for the marginal association
between E1 and Y, which ignores a possible interac-
tion with E2; ORE1�Y|E2=x refers to ORE1–Y conditional
on E2= x, and ROR(E1*E2)�Y refers to the effect of the
E1*E2 interaction for Y, which can be quantified as
the ratio of two ORs:28,29

ROR E1*E2ð Þ�Y ¼ ORE1�Y E2¼1j
ORE1�Y E2¼0j

(1)

ROR(E1*E2)�Y equals exp(β), where β is the regres-
sion coefficient for the interaction E1*E2 in the logis-
tic regression model, which also includes regression
coefficients for E1 and E2.

If U is a confounder for ROR(E1*E2)�Y, then the
estimate not adjusted for U will differ systematically
from its true value, implying the following inequality:

RInter ¼
the estimated ROR E1*E2ð Þ�Y while not adjusting for U

the true ROR E1*E2ð Þ�Y

≠1

(2)

In the following, we explore the conditions under
which RInter≠1, that is, the conditions necessary for
U to act as a confounder for ROR(E1*E2)�Y.

Necessary and sufficient conditions for U to be a
confounder of ROR(E1*E2)�Y

In Appendices A–C, we demonstrate that each of the
following conditions is necessary for RInter≠1 in
Equation 2:

(A): U is associated with Y: ORU�Y≠ 1;

(B): U is associated with each of E1 and E2, in at least one stra-
tum of the other exposure (E2 or E1): [ORE1�U│E2=0≠ 1 or
ORE1�U│E2=1≠ 1] and [ORE2�U│E1=0≠ 1 or ORE2�U│E1=1≠ 1];

(C): The association between E1 and U varies across the strata of
E2: ORE1�U│E2=0≠ORE1�U│E2=1.

While proving the preceding conditions, we refer
to Table 1, which presents frequencies (number of
subjects in a hypothetical population) for each of
16 subgroups, corresponding to different combina-
tions of Y, E1, E2, and U. For Y, 0 and 1 correspond
to non-diseased and diseased, respectively; for other
variables, 0 and 1 correspond to unexposed and ex-
posed, respectively. When U is not adjusted for, the
16 subgroups are collapsed into eight subgroups, by
merging the corresponding subgroups with U=0
and U=1 (last column of Table 1).
ORU�Y is assumed constant across combinations ofE1

and E2, implying no interactions of U with either E1 or
E2 for Y. As shown in Appendix A, RInter in Equation 2
can be written in terms of the frequencies in Table 1:

RInter ¼
1þ b1

a1

1þ b1
a1ORU�Y

*
1þ d1

c1ORU�Y

1þ d1
c1

*
1þ f 1

e1ORU�Y

1þ f 1
e1

*
1þ h1

g1

1þ h1
g1ORU�Y

(3)

Clearly, whenever ORU�Y=1, RInter=1. Thus, condi-
tion A (ORU�Y≠1) is a necessary condition for RInter≠1.
In Appendix B, we demonstrate that conditions B

and C are also necessary conditions for RInter≠1.
Given that condition C logically implies B, the con-

junction of conditions A and C constitutes a sufficient
condition for RInter≠1 in Equation 2.
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Appendix C shows that a failure to account for U
will also result in a biased estimate of ROR(E1*E2)�Y,
in the following conditions: (i) if U is associated with
E1 and (ii) if U modifies the effect of E2 on Y (imply-
ing interaction between U and E2 for Y).
Some distortions of ORs may be due to their

noncollapsibility.30 To demonstrate that the conditions
we outline pertain to the concept of confounding rather
than noncollapsibility, we have carried out analogous
derivations while focusing on relative risk (RR) rather
than OR. Appendix D shows that the right hand of
Equation 3 represents the ratio of the interaction esti-
mate not adjusted for U to the corresponding true
parameter for the E1*E2 for Y interaction, regardless
of whether RRs or ORs are used as the effect measure.
Thus, conditions A and C apply also to RRs and iden-
tify the situations where failure to adjust for U will
result in estimated RR, for E1*E2 interaction, differ-
ing from its true value. Because RR is not affected
by noncollapsiblility,23,31,32 such difference will
mostly reflect the impact of model mis-specification
due to omission of a confounder.

EMPIRICAL EXAMPLE

To illustrate the practical usefulness of our condition
C, we used data from a case–control study of lung
cancer conducted in 1996–2002 in Montreal.33,34 A
total of 1211 newly diagnosed primary lung cancer

cases (743 men and 468 women) were frequency
matched on sex and age with 1539 population controls
(923 men and 616 women). Information on socioeco-
nomic status, ethnic group, cigarette smoking history,
and other risk factors for lung cancer was collected.
Details of study design and data collection were
reported elsewhere.33

We focus on the differences in lung cancer risk
between men and women and explore two examples
of potential effect measure modifications that may be
of substantive interest in etiology of lung cancer. Spe-
cifically, we investigate, in separate analyses, if the
following modify the association between sex and
lung cancer risk: (i) ethnicity and (ii) income. These
analyses imply testing interactions between sex (E1:
exposure of primary interest) and either ethnicity or
income, representing a potential effect modifier (E2).
Ethnicity was dichotomized as French Canadian (two-
thirds of participants) versus all others, and income as
above versus below the median income of all subjects.
The current analyses were limited to 730 women and

1426 men who were past or current smokers and had
complete data. We considered a binary indicator of
“heavy smoking” (above the median of the lifetime
cigarette pack-years among all subjects) as the potential
unmeasured confounder (U). Indeed, while smoking is
the main risk factor for lung cancer, it is not available
in large administrative databases. Each of the two inter-
action effects was analyzed separately and was

Table 1. Frequencies of the 16 hypothetical subgroups

Y* E1† E2† U‡

Frequencies

When U is adjusted for§ When U is not adjusted for¶

0 0 0 0 a0 a0 + b0
0 0 0 1 b0
1 0 0 0 a1 a1 + b1
1 0 0 1 b1
0 1 0 0 c0 c0 + d0
0 1 0 1 d0
1 1 0 0 c1 c1 + d1
1 1 0 1 d1
0 0 1 0 e0 e0 + f0
0 0 1 1 f0
1 0 1 0 e1 e1 + f1
1 0 1 1 f1
0 1 1 0 g0 g0 + h0
0 1 1 1 h0
1 1 1 0 g1 g1 + h1
1 1 1 1 h1

*Y is the binary outcome.
†E1 and E2 are two binary exposure variables.
‡U is a potential binary “confounder.”
§Frequencies in this column correspond to the expected frequency of subjects with specific values of Y, E1, E2, and U, which would be observed if the data
were analyzed with the logistic model: logit(Prob[Y = 1]) = β0 + βE1E1 + βE2E2 + βUU + βInt(E1 * E2).

¶Frequencies in this column correspond to the expected frequency of subjects with specific values of Y, E1, and E2, which would be observed if the data were
analyzed with the logistic model that excludes U: logit(Prob[Y = 1]) = β0 + βE1E1 + βE2E2 + βInt(E1 * E2).
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estimated using two different unconditional multivari-
able logistic regression models, which, respectively,
did or did not adjust for smoking (U). We then assessed
if failure to adjust for smoking affected the estimated
ROR for each interaction.
Table 2 compares the RORs, for each of the two in-

teractions, estimated with and without adjustment for
heavy smoking. Failure to adjust for smoking did the
following: (1) changed substantially the estimated
ROR for the sex*ethnicity interaction but (2) had
almost no impact on the ROR for the sex* income
interaction (Table 2). To explain this contrast, the
rightmost column of Table 2 shows that the associa-
tion between heavy smoking and sex (1) varies signif-
icantly by ethnicity (ROR(Sex*Ethnicity)-Smoking =1.90,
95%CI: 1.20, 3.00) but (2) does not depend on income
(ROR(Sex*Income)-Smoking =0.98, 95%CI: 0.66, 1.43).
Thus, smoking does meet our condition C in the anal-
yses focusing on the sex*ethnicity interaction for lung
cancer but does not meet this condition for the
sex* income interaction. Given that condition C is
necessary for the confounding of the interaction effect
estimate, the preceding contrast explains why failure
to adjust for smoking (which clearly meets our condi-
tion A) affects only the sex*ethnicity interaction. This
contrast also provides further support for our conclu-
sion that the observed change for sex*ethnicity inter-
action is due to unmeasured confounding rather than
noncollapsibility. Indeed, if the impact of not adjusting
for smoking reflected noncollapsibility, then it should
do the following: (i) affect both interactions to a simi-
lar extent and (ii) lead to the estimated interaction
being weaker (with coefficient closer to 0) than the
estimate obtained while conditioning on smoking.
Yet, results in Table 2 show that neither of these con-
sequences occurred.

SIMULATION STUDIES

Objectives

First, simulations were designed to confirm the analyt-
ical results and to assess how the bias of the point
estimate of ROR(E1*E2)�Y depended on the following:
(i) the joint distribution of U, E1, and E2; (ii) the effect
of U on Y; and (c) the prevalence of U. Secondly, sim-
ulations allowed us to account for sampling error and
to assess the impact of confounding on the statistical
inference about the estimated interaction, as well as
its impact on the estimated effects of E1 in specific
strata of E2, and vice versa.

Simulation design and data generation methods

We simulated a hypothetical study, with N=2000 sub-
jects, of the interaction between two binary exposures
E1 and E2, for binary outcome (Y), with a continuous
covariate C, correlated with E1. A binary risk factor
(U), associated with Y, was not adjusted for in the
analyses. Different scenarios assumed different pat-
terns of the relationships of U with E1 and E2 and with
Y. Appendix E describes distributions of all variables
and their relationships, assumed in different simulated
scenarios.
Twenty-two scenarios corresponding to different com-

binations of selected parameters were simulated (see left
parts of Tables 3 and 4). Table 3 summarizes scenarios
designed to corroborate the results of analytical deriva-
tions. Table 4 presents scenarios that assessed the impact
of selected parameters.
The binary outcome Y was generated from the

multivariable logistic regression model:

Table 2. Empirical example of the impact of un-adjusted for risk factor on the estimated RORs for interactions between other variables (data derived from the
Montreal case–control study of lung cancer, 1996–2002, N = 2156)

E1 E2

ROR(E1*E2)-Lung cancer*
†

ROR(E1*E2)-smoking
¶Adjusting for smoking history‡ Not adjusting for smoking history§

Point estimate 95%CI Point estimate 95%CI Point estimate 95%CI

Sex Ethnicity** 1.47 0.93, 2.33 1.73 1.12, 2.67 1.90 1.20, 3.00
Sex Income†† 1.28 0.87, 1.88 1.22 0.85, 1.76 0.98 0.66, 1.43

Abbreviations: CI = confidence interval; ROR = exponentiated coefficient for the interaction.
*Multivariable logistic regression model with binary outcome defined as lung cancer cases versus controls, including the main effects of sex, ethnicity, age,
and income.

†See Table I in Appendix I for the estimates of the regression coefficients of primary interest.
‡The model included the main effects of sex, age, ethnicity/income, and the binary variable for heavy smoking versus non-heavy smoking.
§The model included the main effects of sex, age, and ethnicity or income.
¶Binary outcome was defined as heavy smoking (pack-years ≥median value of pack-years for all subjects) versus non-heavy smoking.
**Ethnicity was coded as French Canadian versus all other ethnicity groups.
††Income was coded as high income (income ≥median value of income for all subjects) versus non-high income.
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logit Prob Y ¼ 1½ �ð Þ ¼ β0 þ βE1E1þ βE2E2
þ βCC þ βUU
þ βInt E1*E2ð Þ (4)

The intercept (β0) was selected to obtain approxi-
mately 50% “disease” (Y=1) prevalence. In all scenar-
ios, we assumed βE1=0.4, βE2=0.9, and βC=0.02,
while varying βU and βInt (Tables 3 and 4).
For each scenario, we generated 2000 independent

random samples.35

Analysis of simulated data

Simulated data were analyzed with multivariable logis-
tic models. All the models included E1, E2, and C, as
well as the E1*E2 interaction (a spurious effect in
scenarios with true ROR(E1*E2)�Y=1). Regression
coefficient estimates, standard errors, and p-values for
two-tailed Wald tests were computed for each sample
and summarized across the 2000 simulated samples.
We focused on the estimation of and inference about

βInt = ln[ROR(E1*E2)�Y], for the E1*E2 interaction.
We assessed bias, coverage rate of 95%CI, and type
I error or power of the interaction test (see Appendix
E for details).

Simulation Results

Necessary and sufficient conditions for U to con-
found the E1*E2 interaction for Y. Whenever U
had no effect on Y, failure to adjust for U did not

induce bias of the interaction estimates (scenarios
1 and 2 in Table 3), confirming that condition A
(ORU�Y≠1) is necessary for U to be a confounder
of ROR(E1*E2)–Y. Thus, in all other simulated sce-
narios, we assumed ORU–Y≠1.
In scenarios 3 and 4, where U was associated with

E1 but was not related with E2 in either stratum of
E1, failure to adjust for U did not bias the E1*E2 in-
teraction estimates (Table 3). Furthermore, Table H
in Appendix H shows that the results for scenarios 3
and 4 remain unchanged if the U–Y association
becomes much stronger, with OR increasing from
2.0 to 5.0. These results confirm that condition B is
also necessary for U to be a confounder of ROR
(E1*E2)–Y.
In scenarios 5–8, U had independent associations

with both E1 and E2. However, scenarios 7 and 8
assumed the E1*E2 interaction for U (ROR(E1*E2)–

U=2), which—in contrast—was absent in scenarios 5
and 6 (ROR(E1*E2)�U=1). Interestingly, the models that
did not adjust for U yielded reasonably accurate results
for the E1*E2 interaction for Y in scenarios 5 and 6.
In contrast, the corresponding estimates had a relative
bias of up to�25.0% in scenarios 7 and 8, where the as-
sociation E1–Y varied across strata of E2, with ROR
(E1*E2)�U=2 (Table 3). This contrast confirms that con-
dition C (ORE1�U│E2=0≠ORE1�U│E2=1) is a necessary
condition for U to be a confounder of the E1*E2 inter-
action for Y. Furthermore, scenario 7, which assumed no
true E1*E2 interaction, shows an inflated type I error

Table 3. Simulation scenarios for assessing necessary and sufficient conditions for U to be a confounder of the E1 * E2 interaction for Y

Scenario
no.

Scenario assumptions* Results from the models that do not adjust for U

Probability of U = 1 (%) for subgroup with

βU
† βInt

‡ βInt
§ RInter

¶

Relative
bias (%)

**

Coverage
rate of
95%CI
(%)

% of
p< 0.05††

E1 = 1,
E2 = 1

E1 = 1,
E2 = 0

E1 = 0,
E2 = 1

E1 = 0,
E2 = 0

1 40.0 10.0 30.0 12.5 0.0 0.0 0.02 1.04 96.0 4.0
2 40.0 10.0 30.0 12.5 0.0 �0.4 �0.39 1.03 �2.5 96.4 53.4
3 40.0 40.0 20.0 20.0 0.7 0.0 0.02 1.03 96.0 4.0
4 40.0 40.0 20.0 20.0 0.7 �0.4 �0.38 1.03 �5.0 95.8 52.3
5 40.0 20.0 30.0 13.8 0.7 0.0 0.05 1.06 95.7 4.4
6 40.0 20.0 30.0 13.8 0.7 �0.4 �0.36 1.06 �10.0 95.8 45.0
7 40.0 10.0 30.0 12.5 0.7 0.0 0.11 1.13 92.6 7.4‡‡

8 40.0 10.0 30.0 12.5 0.7 �0.4 �0.30 1.13 �25.0 93.3 32.0

Abbreviations: CI = confidence interval; OR = odds ratio.
*In all the scenarios listed in Table 3, the following values of β = ln(OR) are assumed for binary exposures E1 and E2 and the adjusted for continuous covariate
C: βE1 = 0.4, βE2 = 0.9, and βC = 0.02.

†Value of ln(ORU�Y) for the effect of U on Y, assumed for the corresponding scenario.
‡True value of ln[ROR(E1*E2)�Y] for the interaction between E1 and E2 for Y, assumed for the corresponding scenario.
§Mean of 2000 estimated ln[ROR(E1*E2)�Y] for the interaction between E1 and E2 for Y.
¶The mean value of RInter, defined in Equation 2, calculated as exp(βInt)/exp(βInt).
**Calculated as (βInt� βInt)/(βInt) (%).
††The percentages in the last column correspond to either (i) type I error rate, in scenarios where βInt = 0 or (ii) empirical power of the interaction test of βInt ≠ 0.
‡‡Inflated type I error rate; that is, the 95%CI for type I error exceeds 0.05.
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rate (Table 3). This indicates that omitting a variable that
meets our conditions for a confounder of the interaction
of interest will result in not only biased interaction
estimates but also substantial increase in the risk of
detecting a spurious interaction when it is truly absent.
Appendix F presents similar results and the same

conclusions, based on additional simulations where
(i) E1 and E2 represented continuous, rather than
binary, exposures and (ii) U was continuous. Finally,
Appendix G shows that the results do not depend on
whether E1 and E2 are correlated or not.

Assessing the impact of selected parameters. Scenar-
ios 7.1–7.7 and 8.1–8.7 differ from, respectively,
scenario 7 or 8 on selected parameter(s) (Table 4).

Scenarios 7.1–7.3 and 8.1–8.3 assessed the impact
of varying the degree to which the association E1–U
varied across strata of E2 (ROR(E1*E2)�U). The bias
of βInt = ln[ROR(E1*E2)�Y] estimate due to failing to
adjust for U increased as the E1*E2 interaction for
U became stronger: for example, from a relative bias
of �25% with ROR(E1*E2)�U=2 (scenario 8) to
�55% with ROR(E1*E2)�U=4 (scenario 8.1). Further-
more, the direction of the E1*E2 interaction for U
determined the direction of the bias in ROR(E1*E2)�Y.
Because βU>0 (Table 4), when ROR(E1*E2)�U>1,
the mean estimate for the coefficient for the E1*E2
interaction for Y is positively biased, that is, higher
than the true value, whereas when ROR(E1*E2)�U<1,
the bias is negative (Table 4).
In scenarios 7.4, 7.5, 8.4, and 8.5, both a weaker

effect of U on Y (scenarios 7.4 and 8.4) and a lower

Table 4. Simulation scenarios for assessing how selected parameters affect the presence/magnitude of confounding bias

Scenario
no.

Scenario assumptions* Results from the models that do not adjust for U

βU
†

Prevalence
of U = 1
(%)‡ ROR(E1*E2)�U

§ ORE1�U
¶ ORE2�U** βInt

†† βInt
‡‡ RInter

§§

Relative
bias
(%)¶¶

Coverage rate
of 95%CI (%)

% of
p< 0.05***

7 0.70 24.6 2.00 1.61 4.62 0.0 0.11 1.13 92.6 7.4†††

7.1 0.70 26.0 4.00 3.16 6.19 0.0 0.23 1.28 76.4 20.7†††

7.2 0.70 28.3 0.50 1.61 3.63 0.0 �0.04 0.98 96.7 3.4
7.3 0.70 22.4 0.25 0.54 2.34 0.0 �0.18 0.85 86.4 13.7†††

8 0.70 24.6 2.00 1.61 4.62 �0.4 �0.30 1.13 �25.0 93.3 32.0
8.1 0.70 26.0 4.00 3.16 6.19 �0.4 �0.18 1.27 �55.0 81.2 13.0
8.2 0.70 28.3 0.50 1.61 3.63 �0.4 �0.44 0.98 10.0 95.8 64.4
8.3 0.70 22.4 0.25 0.54 2.34 �0.4 �0.58 0.85 45.0 86.8 88.4
7 0.70 24.6 2.00 1.61 4.62 0.0 0.11 1.13 92.6 7.4†††

7.4 0.18 24.6 2.00 1.61 4.62 0.0 0.05 1.07 95.4 4.6
8 0.70 24.6 2.00 1.61 4.62 �0.4 �0.30 1.13 �25.0 93.3 32.0
8.4 0.18 24.6 2.00 1.61 4.62 �0.4 �0.37 1.05 �7.5 96.1 49.1
7 0.70 24.6 2.00 1.61 4.62 0.0 0.11 1.13 92.6 7.4†††

7.5 0.70 12.3 2.00 1.61 4.62 0.0 0.07 1.09 95.0 5.0
8 0.70 24.6 2.00 1.61 4.62 �0.4 �0.30 1.13 �25.0 93.3 32.0
8.5 0.70 12.3 2.00 1.61 4.62 �0.4 �0.34 1.08 �15.0 95.3 42.4
7 0.70 24.6 2.00 1.61 4.62 0.0 0.11 1.13 92.6 7.4†††

7.6 0.70 27.2 2.00 1.00 1.07 0.0 0.12 1.15 91.5 8.6†††

7.7 0.70 25.2 4.00 1.00 1.14 0.0 0.19 1.23 84.8 15.2†††

8 0.70 24.6 2.00 1.61 4.62 �0.4 �0.30 1.13 �25.0 93.3 32.0
8.6 0.70 27.2 2.00 1.00 1.07 �0.4 �0.28 1.15 �30.0 91.8 31.3
8.7 0.70 25.2 4.00 1.00 1.14 �0.4 �0.22 1.22 �45.0 86.1 18.4

Abbreviations: CI = confidence interval; OR = odds ratio.
*In all the scenarios listed in Table 4, the following values of β = ln(OR) are assumed for binary exposures E1 and E2 and the adjusted for continuous covariate
C: βE1 = 0.4, βE2 = 0.9, and βC = 0.02.

†Value of ln(ORU�Y) for the effect of U on Y, assumed for the corresponding scenario.
‡Overall prevalence of U = 1 across all combinations of E1, E2, and Y.
§OR of the interaction between E1 and E2 for U, assumed for the corresponding scenario.
¶OR for the marginal association between E1 and U across the two strata of E2, assumed for the corresponding scenario.
**OR for the marginal association between E2 and U across the two strata of E1, assumed for the corresponding scenario.
††True value of ln[ROR(E1*E2)�Y] for the interaction between E1 and E2 for Y, assumed for the corresponding scenario.
‡‡Mean of 2000 estimated ln[ROR(E1*E2)�Y] for the interaction between E1 and E2 for Y.
§§The mean value of RInter, defined in Equation 2, calculated as exp(βInt)/exp(βInt).
¶¶Calculated as (βInt� βInt)/(βInt) (%).
***The percentages in the last column correspond to either (i) type I error rate, in scenarios where βInt = 0, or (ii) empirical power of the interaction test of

βInt ≠ 0.
†††Inflated type I error rate; that is, the 95%CI for type I error exceeds 0.05.
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prevalence of U (scenarios 7.5 and 8.5) resulted in less
biased ln[ROR(E1*E2)�Y] estimates (Table 4).
Table 5 illustrates the impact of the confounding

bias in the estimated coefficient for the E1*E2 interac-
tion on the estimated effects of each of the two expo-
sures, across the strata of the other exposure, for
selected scenarios of Table 4. Specifically, the mean
estimate of the effect of E1 in a given stratum of E2
was calculated as the mean value, across 2000 simula-
tions, of βE1+βIntE2, where βE1 and βInt are estimates
from the logistic model.9 The resulting mean estimates
(shown in the right part of Table 5) were then com-
pared with the corresponding true effects (left part of
Table 5). Regardless of whether the interaction is truly
absent (upper part of Table 5) or present (lower part),
the stratified effects of both exposures differ from their
corresponding true effects, with different effects either
underestimated or overestimated. For example, when
the true effect of E1 does not depend on E2 (true
βInt = 0), unmeasured confounding due to failure to
adjust for U induces spurious differences between
the estimated effects of E1 in the two strata of E2,
and vice versa (scenarios 7–7.3).

Conditions for confounding differ for interaction
effects versus main effects. Scenarios 7.6 and 8.6 as-
sume a combination of the following: (i) no marginal
associations of U with either E1 or E2 (across the
two strata of, respectively, E2 and E1) and (ii) a mod-
erately strong E1*E2 interaction for U with ROR
(E1*E2)�U=2. Notice that (i) implies that U is not a
confounder for the main effects of either E1 or E2.
The resulting estimates of ROR(E1*E2)�Y were biased
and very similar to, respectively, scenarios 7 and 8,
where U had strong marginal associations with E1
and E2 (Table 4). Moreover, in scenarios 7.7 and
8.7, where ROR(E1*E2)�U was increased to 4, the bias

became much stronger (Table 4). These results empha-
size the importance of our condition C: whenever a
risk factor U meets the condition ROR(E1*E2)�U≠1,
it will act as a confounder of ROR(E1*E2)�Y even if,
in bivariate analyses, U has no marginal correlations
with either E1 or E2. In conclusion, a variable that
does not meet classic conditions for a confounder of
the main effect of either exposure may still act as an
important confounder of their interaction.
To further emphasize the contrast between the con-

ditions for confounding of (i) main effects versus (ii)
interaction effects, we reanalyzed data from scenarios
7.6 and 7.7, focusing on the estimates of the main ef-
fects of E1 and E2 on Y. Specifically, we estimated
the reduced multivariable logistic model that included
only the (mutually adjusted) main effects of E1 and E2
on Y and compared the estimates with the correspond-
ing true effects. Notice that because scenarios 7.6 and
7.7 assume no interaction between E1 and E2 for Y
(true βInt = 0 in Table 4), the “reduced” main effects
model is here very similar to the true data-generating
model, except that it does not include U. In all these
simulations, the main effects of both exposures were
estimated without any systematic bias (relative biases
not exceeding 2.5%), even if in the same scenarios
the interaction effects showed substantial bias (scenar-
ios 7.6 and 7.7 in Table 4). These results further dem-
onstrate that even if U is not a confounder for the main
effects of E1 and E2 on Y, it may be still an important
confounder for the E1*E2 interaction for Y, as long as
it meets our condition C: ROR(E1*E2)�U≠1.

DISCUSSION

Any observational (pharmaco-)epidemiologic study is
vulnerable to unmeasured confounding bias. Yet, the
conditions for confounding of interactions have hardly
been discussed in the literature. We have derived the

Table 5. Impact of confounding of the estimated E1 * E2 interaction on the bias of the estimated effects (log ORs) of E1 in different strata of E2, and vice
versa (in selected simulated scenarios)

Scenario
no.*

Scenario assumptions† Results from the models that do not adjust for U‡

βE1|E2=0 βE1|E2=1 βE2|E1=0 βE2|E1=1 βInt βInt βE1|E2=0 βE1|E2=1 βE2|E1=0 βE2|E1=1

7 0.40 0.40 0.90 0.90 0.00 0.11 0.37 0.48 0.99 1.10
7.1 0.40 0.40 0.90 0.90 0.00 0.23 0.39 0.62 0.94 1.17
7.3 0.40 0.40 0.90 0.90 0.00 �0.18 0.38 0.20 1.10 0.92
8 0.40 0.00 0.90 0.50 �0.40 �0.30 0.38 0.08 0.99 0.69
8.1 0.40 0.00 0.90 0.50 �0.40 �0.18 0.39 0.21 0.94 0.76
8.3 0.40 0.00 0.90 0.50 �0.40 �0.58 0.39 �0.19 1.11 0.53

*Details of each scenario are shown in Table 4.
†True value of ln[ROR(E1*E2)�Y] for the interaction between E1 and E2 for Y as well as true values of ln(OR) for the stratified effects of E1 and E2, assumed for
the corresponding scenario.

‡Mean of 2000 estimated ln[ROR(E1*E2)�Y] for the interaction between E1 and E2 for Y and estimated ln(OR) for the stratified effects of E1 and E2.
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necessary and sufficient conditions for confounding of
interactions in logistic regression. Our main result is
that failure to adjust for a risk factor U will confound
the E1*E2 interaction estimates if and only if (C)
the association between E1 and U depends on the
value of E2, which implies an interaction between
the two exposures for U. Interestingly, our conditions
A and C extend the classic conditions, according to
which a confounder of the main effect of a single ex-
posure has to be associated with both, respectively,
the outcome and the exposure,26,36 to the context of
an interaction between two exposures. Indeed, our
condition C implies that U has to be associated with
the interaction term E1*E2, which, in our context,
represents the “exposure” of interest.
These findings should be considered when interpreting

the results of observational studies of interactions in
terms of potential bias due to unmeasured confounding.
The important consequence is that a confounder for the
marginal effect of E1 and/or E2, which, however, does
not meet our condition C, is not a confounder for the
interaction between the two exposures. Accordingly,
researchers concerned about potential confounding of
the estimate of the interaction of interest should focus
on identifying, based on the literature and/or substantive
considerations, those risk factors for Y, for which their as-
sociation with E1 is expected to vary depending on E2.
Once identified, such variables should be ideally adjusted
for in the regression model used to estimate the interac-
tion of interest. If such confounders (U) are not available,
then our simulation results, summarized in Tables 3–5,
will help predict if and how the resulting estimates may
be biased depending on the expected associations of U
with Y and the E1*E2 interaction. Consider, for exam-
ple, education (U) in a study of the interaction between
sex (E1) and age (E2). Among younger subjects
(E2=0), women (E1=1) may have higher average edu-
cation than men (E1=0), but among older subjects
(E2=1), men may have higher education than women.
This implies a strong interaction E1*E2 for U, but the
lack of clear marginal differences in U between levels
of E1 or E2 (e.g., sex-related differences in younger
versus older subjects will approximately cancel out). If
so, for any outcome (Y) associated with education, a fail-
ure to adjust for education may bias the estimated effect
of sex*age interaction, even if U will not be considered
a confounder of the main effect of sex on Y.
Our analytical results were confirmed by the simula-

tion experiments and illustrated by real-life analyses of
a case–control study of lung cancer. Simulations indi-
cate also that the bias due to a failure to adjust for U
that meets our conditions A and C, increases with an
increase in the following: (i) prevalence of the

confounder; (ii) strength of its association with the out-
come; and (iii) strength of the interaction between the
two exposures for U, that is, differences between E1–
U associations across the strata of E2. Furthermore,
omitting U, which meets the aforementioned condi-
tions, may induce a serious risk of type I error, that
is, detecting a spurious interaction when none truly ex-
ists. Additional simulations demonstrate that our con-
ditions apply regardless of whether exposures and/or
unobserved confounder represents binary or continu-
ous variables. Both simulation results and empirical
lung cancer analyses suggest that the impact of a fail-
ure to adjust for an unmeasured risk factor depends
mostly on whether and to what extent it violates our
condition C; that is, this impact reflects mostly
unmeasured confounding rather than noncollapsibility
of odds ratios.
Knol et al. and Kaufman pointed out several limita-

tions of the current practice of interaction assessment7,13

but did not mention unmeasured confounding. Among
30 articles we reviewed that investigated potential inter-
actions, the most common approach was to first build
multivariable regression models to provide valid esti-
mates for the main effect(s) of the exposure(s) in the
interaction term on the outcome and then add the
hypothesized interaction product term(s) to the model.
Thus, covariates were typically selected based on con-
cerns about potential confounding of the main effects
of the exposures. The same practice permeates recent
pharmaco-epidemiological studies of drug–drug or
drug–covariate interactions.2,3 Yet, our simulations
demonstrate that a variable that does notmeet the classi-
cal conditions for a confounder of the main effects of
either exposure may still act as an important confounder
of their interaction. Thus, the current practice might lead
to omission of important confounders of the interaction,
especially when parsimonious models are preferred.
We considered statistical interaction only on a mul-

tiplicative scale, arguably the most common form of
interaction investigated in current epidemiological
practice. Thus, our results pertain to logistic
regression-based OR and RR estimates. Whereas our
results cannot be automatically extrapolated to interac-
tions on the additive scale,7,10 we expect that our ana-
lytical framework and simulation methods could be
also useful in such investigations.
There is no consensus regarding how to estimate

and report interaction effects.13 Given the growing im-
portance of interaction assessments, we hope that our
study will stimulate further methodological investiga-
tion of a topic that has been rather neglected, and a
more informed interpretation of empirical results of in-
teraction analyses.
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KEY POINTS

• Failure to adjust for a risk factor U results in a bi-
ased estimate of the interaction between exposures
E1 and E2 on a binary outcome if the association
between U and E1 varies depending on the value
of E2, or vice versa.

• The resulting bias increases with increasing
strength of the interaction through which E2
modifies the association between U and E1.

• A variable U may act as an important confounder
of the E1–E2 interaction even if U does not meet
the classical conditions for being a confounder
for the main effects of either E1 or E2.

• Epidemiological studies of interactions should
attempt to identify—as potential confounders—
those risk factors whose association with one of
the “exposures” is likely to be modified by the
other “exposure.”
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