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ABSTRACT
Purpose Pharmacovigilance monitors the safety of drugs after their approval and marketing. Timely detection of adverse effects is
important. The true relationship between time-varying drug use and the adverse event risk is typically unknown. Yet, most current
pharmacovigilance studies rely on arbitrarily chosen exposure metrics such as current exposure or use in the past 3months. The authors used
simulations to assess the impact of a misspecified exposure model on the timeliness of adverse effect detection.
Methods Prospective pharmacovigilance studies were simulated assuming different true relationships between time-varying drug use and
the adverse event hazard. Simulated data were analyzed by fitting conventional parametric and more complex spline-based estimation
models at multiple, pre-specified testing times. The ‘signal’ was generated on the basis of the corrected model-specific p-value selected to
ensure a 5% probability of incorrectly rejecting the null hypothesis of no association.
Results Results indicated that use of an estimation model that diverged substantially from the true underlying association-reduced
sensitivity and increased the time to detection of a clinically important association.
Conclusions Time to signal detection in pharmacovigilance may depend strongly on the method chosen to model the exposure. No single
estimation model performed optimally across different simulated scenarios, suggesting the need for data-dependent criteria to select the
model most appropriate for a given study. Copyright © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Monitoring of drug safety must continue after market-
ing. Even large clinical trials lack the power and
generalizability to capture the complete safety profile
of a drug.1,2 Pharmacovigilance aims to detect, assess,
understand, and prevent adverse events (AE).3 Signals
of a drug/AE association can trigger further observa-
tional analyses and clinical trials, which can lead to
changes in marketing and the possible withdrawal of
a drug.4,5 The timeliness with which such signals can

be detected depends on the data available and the
monitoring methods being used. Since the associa-
tions may be weak, large databases are necessary to
ensure adequate statistical power,6 and administrative
population-based databases linked with electronic
health records are a natural choice for post-
marketing surveillance due to their size, rapid availabi-
lity, and diverse population.7,8 Traditional study designs
and statistical methods used in pharmacoepidemiology
have been adapted for prospective pharmacovigilance
to monitor hypothesized associations between specific
drug/AE pairs using observational databases.9–12

Surveillance usually continues as data accumulate over
time. At predetermined time intervals, a regression
model is estimated using the available data to test
the hypothesized association.10,11 A signal is gene-
rated according to a pre-specified stopping rule,
usually when there is sufficient evidence to reject
the null hypothesis of no association, otherwise
testing continues.13
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One important and challenging methodological
issue that has received relatively little attention in the
pharmacovigilance literature is the representation of
drug exposure in the statistical model used to test for
an association. In pharmacovigilance, exposure is
typically represented, with only a few exceptions,14

by simple binary indicators of either current use or
use within an arbitrarily defined time interval.12,15,16

Simple exposure models ignore information on dose,
duration, and timing of the exposure, all of which
tend to vary considerably in post-marketing use17,18

and affect the AE risk.13,19–21 Moreover, the dose-
response and the possible lagged or cumulative effects
of exposure may differ substantially depending on the
specific drug and AE.20 For example, drug-induced
anaphylaxis generally occurs immediately following
the first exposure,22 whereas osteoporosis may be a
result of slower biological changes, possibly induced
by long-term cumulative effects of past exposures.23,24

Simple exposure measures are unable to capture these
effects.11

From both a pharmacological perspective20 and a
statistical perspective,25,26 accurate representation of
the exposure history offers clear advantages. In
retrospective pharmacoepidemiology studies, models
that inaccurately represent the true effects of dose
and treatment duration may substantially lower the
power to detect a drug/outcome association compared
with more appropriate models.21,27,28 Therefore,
whereas accurate modelling of time-varying drug
exposure may also be expected to improve the accu-
racy of prospective pharmacovigilance, its effects on
signal detection in different clinically relevant circum-
stances remain to be assessed.
In this study, we used simulations to investigate the

impact of exposure model misspecification on the
timeliness of signal detection in prospective pharma-
covigilance under different assumptions regarding the
association between time-varying drug use and the
hazard of an AE.

METHODS

We used simulations to evaluate and compare the
performance of alternative exposure models in
pharmacovigilance under a range of plausible condi-
tions. The simulations mimicked real-life prospective
pharmacovigilance studies of a putative association
between a specific drug and a particular AE. Design
and implementation of simulations involved three
broad components: (i) simulating individual time-
varying drug exposure patterns; (ii) specifying the
‘true’ way in which the past and the current exposures

were assumed to affect the AE hazard; and (iii) deter-
mining the surveillance methods, including models
used to test the association and the stopping rule for
signal detection.

Simulating drug exposure patterns

We generated hypothetical cohorts of new users of a
drug with the unexposed time of the new users defin-
ing ‘control periods’. To ensure realistic assumptions,
exposure patterns and dosage changes were randomly
sampled from population-based data on benzodiaze-
pine use amongst older adult residents of Québec,
Canada. Section A.1 of the Supplementary Materials
describes the data in detail. Dosage was standardized
using the defined daily dose for a given benzodiaze-
pine.29 Table 1 summarizes information on benzodiaz-
epine exposure patterns in this cohort. To capture the
dynamic and time-dependent nature of real-life expo-
sure and pharmacovigilance, we simulated a prospec-
tive study with a maximum of five calendar years
of follow-up by randomly assigning each individual
a treatment start time within the first two years of
follow-up.

Simulating adverse events

We relied on the aforementioned benzodiazepine users
cohort to generate a realistic distribution of AE
times.30,31 We used a previously validated algorithm32

to assign event times to individual subjects based on
their simulated time-varying exposure patterns.
To assign event times to individuals with specific

exposure histories, we used 12 alternative simulation
models that assumed different associations between
exposure and the time to AE. Detailed model descrip-
tions are given in Table 2. Model (l) assumed no asso-
ciation and was used to assess the false positive rate
and calibrate the stopping rule (explained in later text).
Other simulation models included six ‘conventional’
simple parametric models, often used in pharma-
coepidemiology, an additional parametric model that
assumed a withdrawal effect, and four weighted
cumulative exposure (WCE) models,25,27 discussed
in the next paragraph. Briefly, some models assumed
that the current exposure had the strongest impact on
the hazard, whereas others are allowed for longer
duration of effect; some models assumed that the
hazard depended on dosage, whereas doses were
irrelevant in others.
To simulate complex associations, we used WCE

models in which the risk depends on the cumulative
effect of the past doses.25,33,34 More precisely, the
WCE(t) at time t is a time-dependent covariate,

impact of model in pharmacovigilance 457

Copyright © 2014 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2015; 24: 456–467
DOI: 10.1002/pds



Table 1. Duration and periods of benzodiazepine exposure for 105 331 new users over 3 years of follow-up

Variable Mean (SD) Median (Q1–Q3) Range

Observation time (days) 934.7 (312.6) 1095 (956–1095) 1–1095
Total duration of benzodiazepine use (days) 218.0 (287.7) 80 (30–280) 1–1095
Number of periods of uninterrupted benzodiazepine use 4.4 (4.6) 2 (1–6) 1–69
Duration of uninterrupted periods of benzodiazepine use (days) 50.0 (88.6) 30 (24–30) 1–1095
Duration of interruption between periods of benzodiazepine use (days) 76.8 (146.2) 22 (6–69) 1–1092
Defined daily dose during periods of benzodiazepine use (DDD) 0.46 (0.38) 0.4 (0.25–0.6) 0.0021–16.9

SD, standard deviation.

Table 2. Detailed descriptions of the alternative time-varying models used to simulate data linking drug exposure with adverse events

Exposure model

Definition of the exposure model

Example drug/adverse event pair*The hazard of an adverse event on day t depended on…

Parametric models
(a) Current use … whether a person was exposed on day t. Penicillin and anaphylaxis22

(b) Current dose … the dose to which a person was exposed
on day t.

Oral corticosteroids and
fracture risk55

(c) Use in the past X days … whether a person was exposed within the
X days prior to and including day t. In this paper,
we set X= 30.

Idiosyncratic effects,56 for example,
antiepileptic drugs and delayed allergic
hypersensitivity reactions57,58; however,
the irrelevance of dose for idiosyncratic
effects is debatable59

(d) Cumulative dose in the past X days … the cumulative dose to which a person was
exposed within the X days prior to and including
day t. In this paper, we set X= 30.

(e) Duration of use … the number of days for which a person was
exposed prior to and including day t.

Low dose (≤7.5mg/day)
prednisone and cataracts60

(f) Total cumulative dose … the total cumulative dose to which a person
was exposed prior to and including day t.

Antiepileptic drugs and
changes in bodyweight57

(g) Withdrawal effect … the total cumulative dose to which a person
was exposed prior to and including day t and on
whether a person discontinued treatment within
the 7 days prior to and including day t. That is,
the withdrawal effect was characterized by a
sharp increase in risk as soon as a drug
was discontinued.

Statins and subarachnoid
hemorrhage61

WCE models
(h) Delayed effect … historical exposures, with the effect of

exposures increasing, reaching a peak and then
decreasing over time. This weight function was
modelled using a normal distribution that was
centred on the number of days prior to day t that
was expected to have the maximum impact on
hazard on day t. In this paper, we centred the
distribution on month 3. (Figure 1, panel (h).)

Prenatal exposure to antiepileptics
and carcinogenic effects57

(i) Decaying effect … current exposures, with the effect of exposures
decreasing over time. This weight function was
modelled using a normal weight function that was
truncated such that the maximum weight occurred
at day t. (Figure 1, panel (i).)

Antiepileptic drugs and adverse
psychiatric effects57,62; oral contraceptives
and venous thrombosis63

(j) Decaying and delayed effect … more recent exposures and certain historical
exposures. This weight function was modelled
using a mixture of models (h) and (i).
(Figure 1, panel (j).)

Glucocorticoids and serious infection28

(k) Dual effect The direction of the hazard of an adverse event
on day t was dependent upon the timing of
historical exposures: more recent exposures
were assumed to be harmful, whereas more
distant exposures were protective.
(Figure 1, panel (k).)

Didanosine therapy and cardiovascular
disease in HIV patients35

No association model
(l) No association The hazard of an adverse event was not in

any way associated with exposures.

*Note: the relevance of binary models is that (i) many studies ignore dose; (ii) many databases have no information on dosage; and (iii) in some studies, there
many be no variation in dose. The examples provided in this table reflect the associations established in the literature but not necessarily the true nature of the
association, which may still be unknown.
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calculated as the weighted sum of the past doses up to
time t, with weights that depend on the time elapsed
since a given dose was taken.21,25 We used four
weight functions to represent alternative complex
associations between drug exposure history and the
hazard (Figure 1; Table 2). To consider both medium-
term and long-term effects, we assumed that the period
during which the exposure affects the future hazard
was, respectively, 6months for models (h)–(j) and up
to 1.5 years for model (k). Previous analyses have
revealed that cumulative effects of various drugs might
extend to at least 1.5–2 years.28,35

We generated 300 cohorts of 3000 individuals for
each of the 11 separate simulation models (a)–(k)
(Table 2), and—to increase the precision in estimating
the false positive rate—1000 cohorts from no-association
model (l). Section A.2 of the Supplementary Materials
provides details on the hazard ratio and cumulative
incidence rate.

Methods for conducting prospective surveillance

Alternative estimation models. We assumed that the
‘true’ simulation model used for cohort generation
was unknown. Therefore, for each simulated cohort,
we evaluated prospective surveillance using several
alternative exposure models, including six conventional
parametric models (a)–(f) and two flexible WCE
models, one that accounted for dosage (continuous
WCE) and one that did not (binary WCE). For the

WCE estimation models, the weight functions were
estimated flexibly using cubic regression B-splines
with two interior knots over the time interval consis-
tent with the WCE simulation models (h)–(k),
resulting in four degrees of freedom for the estimated
exposure effect.25
Models (c)–(d) associated the current hazard with

the past exposures during a specified time interval
(Table 2). Our original estimation models (c)–(d)
assumed an ‘ideal case scenario’, that is, they specified
the same interval that was used in the corresponding
simulation models (30 days). However, in practice,
the exposure time window is often arbitrarily defined
and unlikely to exactly match the true, unknown
period. Therefore, we also estimated alternative
versions of models (c)–(d) that misspecified the period
of exposures associated with the current risk (details
presented in Table 3).
In our main simulations, we assumed random

censoring, no exposure misclassification, complete
ascertainment of AEs, no unmeasured confounding,
and knowledge of the exact event times. Sensitivity
analyses, in which some of these assumptions were
relaxed, are described at the end of the Methods
section.

Stopping rule for signal detection. Prospective sur-
veillance involved repeated analyses at up to 20
testing times, equally spaced at 3-month intervals. At
each testing time, each alternative estimation model

Figure 1. Graphical representation of the four weight functions used for the complex simulation models (h)–(k). The relative weight attributed to each past
dose at day t (vertical axis) as a function of the number of days elapsed because the dose was taken
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used all data available until that time. Then, a model-
specific likelihood ratio test statistic for the null
hypothesis of no association was computed. For the
spline-based WCE models, the number of degrees of
freedom for the test was equal to four, corresponding
to the number of spline coefficients.25 The correspond-
ing p-value for a given estimation model was used
to ‘decide’, based on a predetermined threshold
(discussed in later text), if sufficient evidence existed
to detect a signal of a harmful association. For each
simulated sample, we recorded the time to signal
detection for each estimation model.
Obviously, basing signal detection on the uncor-

rected p-values would induce an inflated overall rate
of false signals because of multiple testing.36 In our
context, the impact of multiple testing on false positive
rate inflation is difficult to quantify analytically
because it depends on the multivariate correlations
between the values of the test statistic at consecutive
testing intervals. Therefore, to control the expected
overall false positive rate, we relied on simulations
that assumed no association (Table 2, model (l)). For
each of the 1000 cohorts simulated from model (l)
and at each testing time, we retained the uncorrected
p-value separately for each estimation model. Then,
for different p-value cutoffs, we estimated the corre-
sponding overall model-specific false positive rate as
the proportion of simulated cohorts in which a given
estimation model would generate a signal for at least
one of the 20 testing times. For each estimation model,
we defined the p-value that resulted in the observed

5% overall false positive rate as the corrected
threshold for signal detection and used this cutoff
across simulations with different ‘true’ data-generating
models and at all testing intervals.

Methods and criteria to evaluate and compare model
performance

We used Kaplan–Meier-like curves to compare the
time to signal detection, across the eight estimation
models, separately for each of the 11 different simula-
tion models (a)–(k) (Table 2). For each estimation
model, the Kaplan–Meier curve shows the proportion
of cohorts that generated a signal up to, and includ-
ing, a given testing interval. For each simulation
and estimation model combination, the value at the
20th interval on the corresponding Kaplan–Meier
curve estimates the final ‘sensitivity’ or the probabil-
ity that a signal will be generated during the follow-
up. We separately reported the median time to
detection.37,38

To rank the estimation models with respect to the
chronological order in which they detected the associ-
ation, we used a rankogram.39 The best-performing
model has the highest probability at rank one, corre-
sponding to the fastest signal detection, with probabil-
ities monotonically decreasing for higher ranks. Since
the performance of alternative estimation models
depended strongly on whether the information on dose
was relevant (in the simulation model) and taken into
account by a given estimation model, we analyzed

Table 3. Detailed descriptions of the alternative time-varying estimation models that correctly specified and misspecified the true period during which past
exposures affected the current risk

Exposure model Definition of the exposure model

The hazard of an adverse event on day t depended on…
Correctly specified parametric models for simulations models (c) and (d)
(c) Use in the past 30 days … whether a person was exposed within the 30 days prior to and including day t.
(d) Cumulative dose in the past 30 days … the cumulative dose to which a person was exposed within the 30 days prior to

and including day t.

Misspecified parametric models
(c.1) Use in the past 10 days … whether a person was exposed within the 10 days prior to and including day t.
(c.2) Use in the past 60 days … whether a person was exposed within the 60 days prior to and including day t.
(d.1) Cumulative dose in the past 10 days … the cumulative dose to which a person was exposed within the 10 days prior to

and including day t.
(d.2) Cumulative dose in the past 60 days … the cumulative dose to which a person was exposed within the 60 days prior to

and including day t.

Correctly specified continuous and binary WCE models for models (h)–(k)
The weight functions were flexibly estimated over 6months (180 days) for cohorts simulated using models (a)–(j) and 1.5 years
(540 days) for cohorts simulated using model (k).

Misspecified continuous and binary WCE models
The weight functions were flexibly estimated over 1 year (365 days) for cohorts simulated using models (a)–(j) and 2 years (730 days)
for cohorts simulated using model (k).
The weight functions were flexibly estimated over 3 years (1095 days) for all cohorts.

WCE, weighted cumulative exposure.
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separately the results of the two types of simulations
and ranked only those models that relied on the correct
assumption regarding the role of doses.

Sensitivity analyses

We conducted additional simulations to assess the
sensitivity of our results and conclusions to specific
assumptions. First, we assessed the joint impact of
(A) exposure measurement errors due to treatment
non-adherence and (B) unmeasured confounding.
Specifically, (A) we simulated different patterns of (i)
occasional non-adherence resulting in the drug not
being taken on some ‘random’ days or (ii) intentional
permanent treatment discontinuation and allowed for
variation of the intensity of non-adherence amongst
subjects in both groups. In the same sensitivity
analysis, (B) we simulated two time-varying unmea-
sured confounders, both associated with the current
exposure and with lower AE risk.
The second sensitivity analyses assessed the general-

izability of our results to more stable exposure patterns,
with longer periods of use, and fewer and shorter
treatment interruptions. Finally, we explored the impact
of changing the chosen false positive rate and the
strength of the underlying association. Section B of the
Supplementary Materials provides further details of
our simulation methods for all sensitivity analyses.

RESULTS

Different aspects of our results are presented in
Figures 2 and 3 and Table 4. The six panels of Figure 2

use the Kaplan–Meier curves to compare the time to
detection between alternative estimation models for
the six selected simulated scenarios. Rankograms in
Figure 3 present distributions of the ranks across
relevant estimation models, in terms of timeliness of
detection, for different simulated scenarios. Finally,
Table 4 compares median times to detection across
the estimation models.
To illustrate the impact of estimation model miss-

pecification, we first interpret, as an example, the
results for the data generated from the total cumulative
dose model (Table 2, model (f)). As expected, the total
cumulative dose model, consistent with the ‘true’
simulation model, offered the fastest signal detection
(Figure 2f, dashed black curve) and was the only
estimation model that detected a statistically signifi-
cant association within the follow-up time in all simu-
lated cohorts (Figure 2f). Therefore, the use of
estimation models that misspecify the exposure effect
decreases the sensitivity of signal detection, even by
the 20th testing interval. Furthermore, most estimation
models that ignored doses (Figure 2f, grey curves) had
a substantially delayed detection of a harmful associa-
tion compared with the models that accounted for
dosage (black curves), and the median times to detec-
tion for the current or the past 30 days that use models
(a) and (c) were double the corresponding median for
the correct model (f) (Table 4, column (f)). Finally,
among the four models that did account for dosages,
the ‘correct’ model (f) was the first to generate a signal
in 84% of the simulated cohorts (Figure 3f).
Results for the data generated from other simple

parametric models (a)–(g) are generally consistent in

Figure 2. Comparison of times to signal detection generated by alternative estimation models for six selected simulation models. At each testing interval
(horizontal axis), the curves indicate the proportion of the 300 cohorts generated for each simulation model that have already signalled an association (vertical axis)
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that misspecification of the estimation model may
decrease the probability of detecting an adverse effect
and considerably delay signal generation (Figures 2
and 3; Table 4). The impact of model misspecification

increases if the estimation model assumes an exposure
effect that diverges more substantially from the
true association. For example, imposing an incorrect
assumption regarding the presence (Figure 2, black

Figure 3. Comparison of estimation model rank probabilities in terms of timeliness of detection—relative to the other models included in each panel—(A) across
10 of the 11 simulation models and (B) between estimation intervals for the cumulative dose model (model (d)). Note that since multiple estimation models may
have generated a signal at the same testing interval for a given simulated cohort (resulting in tied ranks), the probabilities at a given rank may not sum to 1
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curves) or the absence (Figure 2, grey curves) of a
dose effect leads to systematically much longer
detection times (Figure 2; Table 4).
Interestingly, when the data were generated from a

WCE model (Table 2, models (h)–(j)), some simpler
parametric estimation models still detected the harmful
association faster than the correct flexible WCE model
(Figures 3h–j). The power of WCE-based tests was
reduced by the higher degrees of freedom required to
model complex associations.25 In contrast, parametric
estimation models were often unable to detect the dual
drug effect (Table 2, model (k)), even by the end of
follow-up, whereas this effect was almost always
detected by the flexible WCE model (Figure 2k).
Overall, although no single estimation model was

uniformly ‘optimal’ across all simulated scenarios,
neither the interval models (c)–(d) nor the WCE
models were ranked as the worst models in any
simulation, in terms of the longest median detection
time (Figure 2) or the highest probability of (last) rank
4 (Figure 3). Indeed, in simulations that ignored dos-
age, the binary WCE model consistently ranked sec-
ond best, being outperformed only by the ‘correct’
model (Figure 3a,c,e).
In general, regardless of the estimation model, in

simulations where the true exposure effect depended
on the total cumulative values of duration of the past
use (Figure 2e) or the past doses (Figure 2f), signals
were generated later than for shorter effects.
As expected, the performance of the estimation

models also deteriorated if the time window over
which the past exposure was assumed to affect current
risk was misspecified (Table 4). Here, our results sug-
gest that underestimating the length of the exposure
time window may have a greater negative impact than
overestimating it (e.g. Table 4, columns (d) versus (f)).
Figure 4 compares the times to signal detection

for alternative estimation models in sensitivity
analyses with both (i) exposure measurement errors

due to non-adherence and (ii) unmeasured time-
varying confounding. As expected, the joint impact
of ‘protective’ unmeasured confounding and the
exposure measurement errors generally delayed signal
detection (Figure 4) compared with main simulations
(Figure 2). However, these factors did not appear to af-
fect the general trends noted earlier: estimation models
consistent with the ‘true’ simulation models offered
the fastest signal detection and the highest sensitivity
of signal detection by the end of follow-up. Indeed,
delays in detection were most marked for those
estimation models that misspecified the underlying
association (Figure 4). Additional sensitivity analyses
further indicated that the general simulation results
were robust with respect to variations in the stability
of exposure patterns, the threshold for signal detection
and the strength of the simulated association. Specifi-
cally, in all sensitivity analyses, the estimation model
consistent with the true underlying association yielded
the shortest time to signal detection and the highest
sensitivity (Supplementary Materials, Section B).

DISCUSSION

Results of our simulations illustrate the impact of
exposure model selection on the time to signal detec-
tion in pharmacovigilance. In most simulated scenar-
ios, the adverse effects of a drug were detected most
efficiently if the estimation model correctly specified
the association used to generate the data. Use of
estimation models that misspecified the true associa-
tion could considerably reduce the probability of
signal detection and induce important delays.
On the other hand, even when the true association

involved complex cumulative but uniformly harmful
effects, simple parametric models often generated
signals more rapidly than the flexible WCE model.
Although the latter would be essential to accurately

Figure 4. Comparison of times to signal detection generated by alternative estimation models for two selected simulation models in cohorts with simulated
exposure measurement errors due to treatment non-adherence and unmeasured confounding. At each testing interval (horizontal axis), the curves indicate the
proportion of the 300 cohorts generated for each simulation model that have already signalled an association (vertical axis)
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describe the true cumulative effect,21 the power of the
corresponding test was reduced because of high degrees
of freedom necessary to achieve modelling flexibility.25

Therefore, as with other pharmacovigilance methods,13

after initial signal detection, further analysis would be
required to more accurately estimate and describe the
nature and strength of the underlying association.
However, the flexibility of the WCE model was
instrumental in detecting complex ‘dual’ effects28 of
drugs or interventions associated, for example, with
short-term risk increase, followed by a long-term
protective effect (Figure 2k). An example of this type
of association was reported between some antiretroviral
drugs for HIV and cardiovascular risks.35 Simple
one-degree of freedom parametric models were
often unable to detect signals in such complex situations
(Figure 2k), because the average exposure effect over
time would appear close to the null.
Our simulations suggest that without prior knowl-

edge of the functional form of association, optimal
pharmacovigilance is unlikely to be obtained by relying
on an arbitrarily selected parametric model. Yet, meth-
odology currently proposed for pharmacovigilance,
such as those outlined by the Mini-Sentinel initiative,
does not recommend which exposure models should
be selected for analysis or on what criteria this
selection should be based.10 Applications of these
methods,11,12 and other sequential testing algorithms
for pharmacovigilance,40 involve simple exposure
models such as a binary indicator of use/non-use or
the total duration of the previous use that ignores the
dosage and/or timing of exposure, without explaining
the reason for the model choice. The current tendency
to rely on arbitrarily chosen exposure models is
reflected, for example, in the finding that several
studies that investigated the same association, between
use of glucocorticoids and the risk of infection in
rheumatoid arthritis, employed a wide range of
exposure models, including (i) the current use; (ii)
the recent use, with different durations of the
relevant time window; (iii) ever use; or (iv) the total
cumulative (unweighted) dose.41–46 Obviously, it is
impossible that all these models correctly specify the
true effect of glucocorticoids. Our finding that no
single estimation model performed optimally across
the range of simulated scenarios suggests the need to
develop data-dependent criteria, which will help
guide selection of the model(s) most appropriate for
a given study.
Where information on dose is missing from the

database, pharmacovigilance would need to rely on
binary estimation models, which ignore the dosage.
Where dose affects the time to an AE, using binary

estimation models may delay signal detection and
reduce ‘sensitivity’. However, our results demonstrate
that even in such analyses, accurately accounting
for the duration and timing of the past drug use
substantially improves the performance of binary
estimation models (Figure 2b,f).
Our study has some limitations. First, our simulation

models represent only a subset of the models that may
represent the true relationships between different drug
exposures and various AEs. However, most of the
models that we considered represent associations that
have been observed (Table 2), and that are convention-
ally tested for, in pharmacoepidemiology.
Second, similar to other studies in this area,11,21,47

our main simulations assumed no unmeasured con-
founding and complete ascertainment of AEs. These
simplifications helped us focus on the issues specific
to exposure modelling. Clearly, different patterns of
exposure measurement errors and/or unobserved
confounding may be applied in different real-life
pharmacovigilance studies. However, the fact that in
our sensitivity analyses the general pattern of results
was only slightly affected by a combination of
frequent non-adherence and moderate unmeasured
confounding suggests that our conclusions are robust
to these factors. Yet, applications of our methods to
real-life settings will require a careful consideration
of these important issues.7 Future research may also
consider alternative designs of simulation studies.48,49

Third, we somewhat arbitrarily selected the false pos-
itive rate, chose our threshold for signal detection to be
‘flat’ (i.e. constant over time), and pre-set the number
of testing intervals. In practice, where the number of
testing points may be a priori unknown, it is more
challenging to set pharmacovigilance thresholds.50 The
acceptable false discovery rate51 may be selected to take
into account both further investigations that will be
required after signal detection and the AE severity.11

Furthermore, the threshold may be either constant or
decreasing over time13,50 and may be determined on
the basis of empirical studies with a priori known lack
of an association.52 In the current study, we implemented
a ‘generic’ computationally expensive approach that re-
lies on simulating the model-specific distribution of the
test statistic based on multiple testing times that would
be expected under the null hypothesis of no association.
This allowed us to calibrate the p-value threshold to en-
sure the pre-specified overall false positive rate.53,54

However, our approach requires specifying drug expo-
sure patterns used in simulations. Future research should
determine if ‘standard’ thresholds for use under a wide
array of drug exposure patterns and distributions of the
AEs under study can be identified.

impact of model in pharmacovigilance 465

Copyright © 2014 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2015; 24: 456–467
DOI: 10.1002/pds



Prospective monitoring of large databases is neces-
sary to ensure the timely detection of safety concerns
related to pharmaceuticals. We have shown that time
to detection may depend strongly on the method
chosen to model the exposure. Since optimal
pharmacovigilance is unlikely to be obtained by
relying on only one arbitrarily selected parametric
model, simultaneous testing of alternative models
might prove to be effective. Future research should
develop and evaluate analytical strategies that will
combine efficient and timely signal detection with
accurate control of the overall false discovery rate to
account for both multiple testing and multiple estima-
tion models.
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