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Flexible Marginal Structural Models for Estimating the
Cumulative Effect of a Time-Dependent Treatment on
the Hazard: Reassessing the Cardiovascular Risks of
Didanosine Treatment in the Swiss HIV Cohort Study

Yongling XIAO, Michal ABRAHAMOWICZ, Erica E. M. MOODIE, Rainer WEBER, and James YOUNG

The association between antiretroviral treatment and cardiovascular disease (CVD) risk in HIV-positive persons has been the subject of much
debate since the Data collection on Adverse events of Anti-HIV Drugs (D:A:D) study reported that recent use of two antiretroviral drugs,
abacavir (ABC) and didanosine (DDI), was associated with increased risk. We focus on the potential impact of DDI use, as this drug has
not been as studied intensively as ABC. We propose a flexible marginal structural Cox model with weighted cumulative exposure modeling
(Cox WCE MSM) to address two key challenges encountered when using observational longitudinal data to assess the adverse effects
of medication: (1) the need to model the cumulative effect of a time-dependent treatment and (2) the need to control for time-dependent
confounders that also act as mediators of the effect of past treatment. Simulations confirm that the Cox WCE MSM yields accurate estimates
of the causal treatment effect given complex exposure effects and time-dependent confounding. We then use the new flexible Cox WCE
MSM to assess the association between DDI use and CVD risk in the Swiss HIV Cohort Study. In contrast to the nonsignificant results
obtained with conventional parametric Cox MSMs, our new Cox WCE MSM identifies a significant short-term risk increase due to DDI use
in the previous year. Supplementary materials for this article are available online.

KEY WORDS: Antiretroviral treatment; Cardiovascular disease; Regression splines; Survival analysis.

1. INTRODUCTION

With the advent of potent antiretroviral (ARV) therapy, the
life expectancy of HIV-infected persons has steadily improved,
however, incidence of cardiovascular disease (CVD) has in-
creased (Martı́nez, Larrousse, and Gatell 2009). Indeed, CVD
is one of the leading causes of non-HIV-related death among
HIV-infected persons (Sackoff et al. 2006). One may wonder
if the increased CVD risk is due to ARV therapy itself, or it is
simply an unmasking of the illness due to the increased lifespan
of HIV-infected individuals?

Recently, investigators from the Data collection on Adverse
events of Anti-HIV Drugs (D:A:D) reported an increased risk
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of myocardial infarction (MI) with recent use of the nucleo-
side analog reverse transcriptase inhibitors (NRTIs): abacavir
(ABC) and didanosine (DDI) (Sabin et al. 2008). Numerous
studies have focused on the potential association between ABC
and CVD (Bavinger et al. 2013). In this article, we focus on the
potential impact of DDI use. In recent meta-analyses, the com-
bination of DDI and lamivudine was found more effective and
better tolerated than other common NRTI combinations (Carr
and Amin 2009; Chowers et al. 2010). In the guidelines for the
use of antiretroviral agents in HIV-1-infected adults and adoles-
cents (accessed October 2013), DDI has been indicated being
associated with a number of serious adverse events such as pan-
creatitis and peripheral neuropathy (PN), however an association
between DDI and CVD is more speculative. In the SMART trial
(Lundgren et al. 2008a), current DDI use was not associated
with major CVD events (OR = 1.06, 95% CI: 0.43–2.58). In
contrast, Worm et al. (2010) found that recent DDI exposure
was associated with an increased risk of MI (RR = 1.41, 95%
CI: 1.09–1.82). A recent case–control study reported that MI
risk was not affected by recent DDI use but decreased with in-
creasing duration of past exposure (OR (95% CI) for cumulative
exposure: 0.88 (0.77–1.01)) (Lang et al. 2010).

The above discrepancies in findings may partly reflect dif-
ferences in analytical methods. Indeed, observational studies
of drug effects must account for between- and within-subject
variation in the temporal patterns of drug use (Abrahamowicz
and Tamblyn 2005), and potential confounding by (counter-)
indication (Walker et al. 1996). The question of whether it is a
disease or its treatment that leads to an increased risk is method-
ologically challenging.
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In assessing the association between DDI use and CVD risk
using longitudinal observational data, one challenge is how to
model the history of DDI treatment. This requires assessing
whether and how the treatment effects may cumulate over time,
including the need to account for potential differences in the
impact of the past treatments, received at different times, on the
current risk. An inappropriate specification of the relationship
between the risk at time t and the treatment history up to t may
bias the estimated effects and reduce the power to detect an
association (Abrahamowicz, Beauchamp, and Sylvestre 2012).
Published studies of the potential impact of DDI treatment on
CVD risk relied on simple exposure metrics, such as duration of
past use or indicators of current or recent use (Sabin et al. 2008;
Lang et al. 2010; Worm et al. 2010). Such metrics impose strong
assumptions and ignore variation in the recency or duration of
the DDI treatment. However, effects of past drug exposures
may cumulate over time and depend on the time since exposure
(Csajka and Verotta 2006).

Another challenge in observational studies of the effects of
time-dependent (TD) treatments concerns the need to account
for relevant TD covariates. Any TD variable that: (1) affects or
predicts both the outcome and subsequent treatment changes,
and (2) is itself affected by past treatments, will act simultane-
ously as both a confounder and a mediator of the total treatment
effect. Conventional multivariable models are not able to consis-
tently estimate the total causal treatment effect in the presence
of a TD confounder which acts also as a mediator of treatment
effects (Hernán, Brumback, and Robins 2000; Robins, Hernán,
and Brumback 2000). The concern over TD confounding and
mediation is important in the context of assessment of DDI im-
pact on CVD risks. Patients experiencing virologic failure on
first or subsequent treatment combinations might be more likely
to receive DDI, as resistance to DDI develops slowly (Stanford
University, HIV Drug Resistance Database 2007). On the other
hand, intermittent viral replication as a consequence of virologic
failure may increase CVD risk (Lundgren et al. 2008b). How-
ever, the use of DDI may also prevent future virologic failures,
which could prevent CVD events. Thus, virologic failure may
act as both a TD confounder and a mediator of the effect of DDI
use on CVD risk.

In this article, we propose a new time-dependent marginal
structural Cox model that incorporates weighted cumulative ex-
posure (WCE) modeling to account for both (1) full treatment
history, including variations in its duration and timing, and (2)
simultaneous TD confounding and mediation. We first validate
the proposed model in simulations, and then use it to assess the
causal effect of DDI use on the risk of the cardiovascular events
in the Swiss HIV Cohort Study.

2. A FLEXIBLE MARGINAL STRUCTURAL COX
MODEL WITH WEIGHTED CUMULATIVE EXPOSURE

We propose a new flexible marginal structural Cox model
with WCE modeling, which combines the flexible modeling of
the cumulative effects of TD treatments (Sylvestre and Abra-
hamowicz 2009), and the marginal structural Cox model to ac-
count for TD confounders affected by past treatments (Hernán,
Brumback, and Robins 2000). The WCE approach accounts for
past exposure/treatment history in a Cox proportional hazards

(PH) model by modeling the cumulative effect as the weighted
sum of past exposures, which are assigned different weights
depending on the time elapsed since exposure (Abrahamowicz
et al. 2006). A flexible extension of this Cox WCE model uses
splines to estimate a smooth weight function of arbitrary shape
(Sylvestre and Abrahamowicz 2009). In analyses of adverse
effects of various medications, the flexible Cox WCE model
substantially improved the fit to data, compared to simpler ex-
posure models, and yielded new insights (Sylvestre et al. 2011;
Dixon et al. 2012; Abrahamowicz, Beauchamp, and Sylvestre
2012). However, the model does not handle TD variables which
may act as both confounders and mediators of the effects of past
treatments (Sylvestre and Abrahamowicz 2009).

In the marginal structural Cox model (referred to as Cox
MSM), the TD confounders/mediators are controlled for with
inverse probability of treatment (IPT) weights (Hernán, Brum-
back, and Robins 2000). Although the importance of account-
ing for potential cumulative effects of treatments in longitudinal
studies has been recognized in the causal inference literature
(Robins 1999; Platt et al. 2013), to date, the proposed Cox MSM
and its applications for binary exposures have only considered
simple summary metrics of an exposure history (e.g., Hernán,
Brumback, and Robins 2000; Westreich et al. 2010; Hernández
et al. 2012).

2.1 Cox MSM With WCE Modeling

In the new Cox MSM with WCE modeling (Cox WCE MSM),
the hazard at time u is defined as

λTa
(u|V ) = λ0(u)exp(βWCE(u) + αV ), (1)

where V is the vector of baseline covariates. The WCE(u) is
defined as the weighted sum of past treatments over the time
window [u − c, u]:

WCE(u) =
u∑

t=u−c

w(u − t)a(t), (2)

where a(t) represents either a binary indicator of being treated,
or a quantitative measure of treatment intensity or dose at time
t, and u − t is the time elapsed since t. In the Cox WCE
MSM (Equation (1)), λ0(u) is the baseline hazard for the “refer-
ence” population with V = 0 and a(t) = 0 (i.e., never treated).
λTa

(u|V ) represents the hazard at time u, had a subject followed,
possibly contrary to the fact, the treatment history a up to time u,
that is, the counterfactual hazard. To model counterfactuals, we
use IPT weighting to construct a pseudopopulation (see Section
2.2). β is the causal effect of the WCE, in terms of the log of
hazard ratio associated with a unit increase in WCE(u).

Like conventional MSMs, the flexible Cox WCE MSM re-
quires a number of assumptions in order for causal parameters
to be identified: (1) at each interval, all confounders of the asso-
ciation between treatment and the outcome have been measured
(no unmeasured confounders); (2) the treatment and marginal
response models have both been correctly specified; (3) ex-
posure status is not uniquely defined by covariates (positivity
assumption); and (4) each person’s potential outcome depends
only on his exposure, but not on that of others (Robins, Hernán,
and Brumback 2000). Assumption (2) implies that the treat-
ment model correctly specifies the dependence of treatment on
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confounding variables, while the marginal outcome model cor-
rectly specifies how the hazard depends on the exposure and any
baseline covariates included in the model.

2.2 Estimation of the Cox WCE MSM

Estimation involves two steps. First, we calculate the IPT
weights to construct a pseudo-population in which there is no TD
confounding. In the second step, we estimate the weight function
for the effect of the TD treatments using cubic regression B-
splines in the pseudo-population.

Estimation of IPT Weights. Assuming that the treatment sta-
tus changes only at discrete times (e.g., clinic visits), one can
calculate the IPT weights based on the person–visit data. The
subject–visit–specific stabilized IPT weights for subject i are
calculated as (Hernán, Brumback, and Robins 2000)

w
(s)
i (u) =

m(u)∏
k=1

(P [A(k) = ai(k)|A(k − 1) = ai(k − 1), V = vi])

/(P [A(k) = ai(k)|A(k − 1) = ai(k − 1),

L(k) = li(k), V = vi]), (3)

where m(u) is the number of visits up to time u, V denotes
baseline covariates, and A(u) and L(u) denote treatment and
covariate history up to u. Stabilization reduces variability in
the estimated treatment effects, but even estimators based on
stabilized IPT weighs may still suffer from variance inflation
due to a few extreme weights (Cole and Hernán 2008). Weight
truncation has been shown to reduce variability at the cost of
introducing some bias (Cole and Hernán 2008; Xiao, Moodie,
and Abrahamowicz 2012).

Flexible Estimation of the WCE Effect. To estimate the
weight function in Equation (2) for the cumulative effect of a TD
treatment, without imposing a priori constraints on its paramet-
ric form, we adapt the approach of Sylvestre and Abrahamow-
icz (2009), who used cubic regression B-splines (Ramsay 1988).
There are several advantages of using cubic regression B-splines
functions. First, B-splines are linear in the regression coeffi-
cients which permits standard methods of estimation and infer-
ence (Wegman and Wright 1983). Second, since each B-spline
takes nonzero values over only a limited interval, modifying
data in one region will only affect part of the curve, reducing the
impact of outliers. Furthermore, the fact that the cubic B-spline
function and its first two derivatives are continuous at the knots
ensures smooth and clinically plausible estimates for the weight
function. Finally, by fixing specific spline coefficients to zero,
regression B-splines can be constrained to go to zero smoothly
at either boundary of the data range (Ramsay 1988).

Using cubic regression B-splines, the weight function of time
since exposure, u − t , can be expressed as

w(u − t) =
p∑

k=1

θkBk(u − t), (4)

where Bk, k = 1, . . . , p represent the p functions in the cubic
B-spline basis, and p is equal to the sum of the number of interior
knots and the spline order (4 for cubic splines). The θ ’s are the
p coefficients of the B-spline basis, which determine the shape
of the weight function and must be estimated from data.

The weight function in (4) is estimated over the user-specified
time interval from 0 (current time u) to c time units ago, where c
represents the longest time interval over which past treatments
may affect current risk. For cubic splines, four exterior knots are
placed at each boundary (0 and c). The m interior knots of the
spline basis are placed so as to divide the time window [0; c] into
m + 1 equal subintervals. By substituting the spline function in
(4) for weights w(u − t) in Equation (1), we obtain

λTa
(u|V ) = λ0(u)exp

(
β

u∑
t=u−c

p∑
k=1

θkBk(u − t)a(t) + αV

)
.

Reordering the terms, the above equation can be rewritten as

λTa
(u|V ) = λ0(u)exp

(
p∑

k=1

βθk

u∑
t=u−c

Bk(u − t)a(t) + αV

)

= λ0(u)exp

(
p∑

k=1

γkDk(u) + αV

)
, (5)

where Dk(u) = ∑u
t=u−c Bk(u − t)a(t), k = 1, . . . , p are the ar-

tificial TD covariates which together represent WCE(u). The
advantage of reparameterization is that standard estimation tech-
niques can be applied (Abrahamowicz, MacKenzie, and Esdaile
1996). The terms γk = βθk , k = 1, . . . , p represent the regres-
sion coefficients of Dk(u) and can be estimated using standard
software for conventional Cox models with TD covariates.

Once γ ’s have been estimated, the log hazard ratio corre-
sponding to a contrast between any two treatment history pat-
terns, a1(u) and a0(u), can be calculated as

p∑
k=1

γ̂k

u∑
t=u−c

Bk(u − t)[a1(t) − a0(t)].

The coefficient of WCE(u), β in (1), that is, the logHR of
being always treated for c days (the longest time interval during
which past treatment could affect the current risk) versus never
treated, can be reconstructed by substituting a1(t) = {1, . . . , 1}
and a0(t) = {0, . . . , 0} into the above equation. Thus,

β̂ =
c∑

t=0

p∑
k=1

γ̂kBk(c − t). (6)

Finally, to facilitate comparisons between different analyses,
the normalized weight function, with the area under the curve
constrained to 1.0, is then calculated as

ŵ(u − t) =
∑p

k=1 γ̂kBk(u − t)

β̂
. (7)

Constrained WCE Models. The weights may be often ex-
pected to smoothly decrease to zero at the end of the support
interval, implying that the treatment that occurred c days ago
has no effect on the current risk (Sylvestre and Abrahamowicz
2009). This is straightforward as imposing γp = 0 in Equa-
tion (5) is sufficient to force w(c) = 0, while adding the con-
straint γp−1 = 0 forces the first derivative of the weight func-
tion to equal to 0 at (u − t) = c, ensuring that w(u − t) decays
smoothly to 0 at the end of the time window. Similarly, to add a
constraint at the left end of the interval (corresponding to current
treatment at t = u), one can force both γ1 and γ2 to be 0. Such
a left constrained model may be appropriate in analyses where
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the treatment of interest is expected to affect the risk after some
latency period.

In some applications, there may be considerable uncertainty
regarding (i) the length of the time window c over which past
treatment may affect current risk, (ii) the need for constraints at
either end of the time window, and (iii) the “optimal” number
of interior knots m necessary to ensure adequate flexibility of
the estimated weight function while reducing the risk of over-
fit bias. We recommend estimating alternative models, with 1–3
interior knots, plausible choices for c, and boundary constraints,
and then relying on the Bayesian information criterion (BIC)
adapted to censored survival data (Schwarz 1978; Volinsky and
Raftery 2000), to select the final model. See Appendix A in the
online Appendix for a discussion of model selection criteria for
Cox WCE MSM.

3. SIMULATION STUDIES

3.1 Data Generation

We adapted the data-generating mechanism of Young et al.
(2010) to the WCE context. Event times were generated from
the following structural nested accelerated failure time model
(Hernán et al. 2005):

T0 =
∫ Ta

0
exp[βWCE(u)]du, (8)

where Ta denotes the counterfactual event time under treatment
history a, and T0 denotes the counterfactual event time under
the never-treated regime (i.e., a = 0). When event times follow
an exponential distribution, the causal effect of the treatment in
the Cox MSM λTa

(u|V ) = λ0(u)exp(βWCE(u))) equals to the
effect assumed in the data-generating model (8) (Young et al.
2010).

In simulation, each of N = 1, 000 subjects had up to m = 10
visits equally spaced at 30-day intervals. Details of the data gen-
eration are given in Appendix B of the online Appendix. Briefly,
we first generated counterfactual event times under the never-
treated regime T0, and baseline values of the TD confounder
L, L(1). Next, for each visit j ∈ [1, 10], we alternated between
generating (1) the binary treatment indicator A(j ) depending on
the previous treatment and current confounder value, and (2) the
current L(j ) value conditional on the counterfactual event time
T0 and previous values of A(j − 1) and L(j − 1). Treatment
was made to affect risk according to the WCE model (Equa-
tion (2)). We considered two alternative true weight functions
w(u − t) (bold curves in panels (a) and (b) of Figure (1)), each
defined over the time window [0, 120] days. The final event
time was simulated conditional on the TD values of the updated
WCE and counterfactual event time T0, using the approach by
Young et al. (2010). Subjects were censored at u = 300 if they
had no event up to that time; no other losses to follow-up were
generated. The overall censoring rate was about 30%, implying
about 700 observed events per sample.

3.2 Analysis of Simulated Data

For each scenario, we simulated 100 samples. First, stabilized
IPT weights, for each subject at each visit, were calculated using

Equation (3) and kept constant between the visits. The data were
then augmented to person–day data and the artificial TD co-
variates Dk(u), k = 1, . . . , p (see Section 2.2) were calculated
for each subject at each day. Finally, we fitted the Cox WCE
MSM: λ[u|A(u)] = λ0(u)exp(

∑p
k=1 γkDk(u)), with stabilized

IPT weights. We estimated three alternative models with 1–3
interior knots within the prespecified time window [0, 120] and
a priori imposed right constraints ŵ(c) = ŵ′(c) = 0, c = 120.
The BIC was used to identify the best-fitting model. In sensitiv-
ity analyses, the models were reestimated with the IPT weights
truncated at the 99th percentile of their distribution.

3.3 Simulation Results

The top panel of Figure 1 presents the estimated weight
functions for the two scenarios, using cubic splines with the
BIC-selected number of knots. The mean estimates (dashed
curves) are very close to the true marginal weight functions
(bold curves), although in Scenario 2 the peak is slightly under-
estimated (Figure 1(b)). The estimates from individual samples
show large variability (gray curves). This may partly reflect
sampling variance in the BIC-based selection of the number of
knots which, in turn, may be related to high IPT weights. In-
deed, the highest weights in individual samples range from 14
to 490. In contrast, the 99th percentiles of the sample-specific
IPT weights are stable, varying from 3.3 to 4.8. As shown in the
bottom two panels of Figure 1, for both scenarios, truncating
IPT weights at the 99th percentile of the distribution of IPT
weights in each sample dramatically reduced the variability of
the estimated weight functions, at the cost of slight increase in
the bias for Scenario 2.

For each sample, the cumulative effect of being always treated
in the last 120 days was estimated using Equation (6). For both
scenarios, the mean β̂’s were acceptably close to the true β,
with the relative biases of only 3.3% and 11.7%, and both 95%
CIs included the true β (data not shown). Overall, simulations
confirmed that the Cox WCE MSM yielded acceptably accurate
estimates of the marginal cumulative treatment effect, in terms
of both its strength and the shape of the weight function.

4. ASSESSING THE ASSOCIATION BETWEEN DDI
USE AND CVD RISKS

4.1 The Swiss HIV Cohort Study

To assess the potential association between DDI use and CVD
risk, we reanalyzed data from the SHCS, an ongoing multi-
center, prospective observational study of individuals infected
with HIV, initiated in 1988 (Swiss HIV Cohort Study 2010).
We analyzed all data from April 2000, when CVD risk assess-
ment became routine until October 2012. Demographic, clinical,
laboratory, antiretroviral (ART) therapy information, and CVD
risk factors were collected at enrolment and at follow-up visits.
Each patient’s follow-up was divided into one-month periods,
and both the treatment and all TD covariates were assumed to
remain constant within each period. Time zero was the date of
patient’s first record after April 2000. Patients were censored at
a non-CVD death, the last follow-up date, or October 31, 2012.
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(c) Scenario 1, IPT weights truncated
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(d) Scenario 2, IPT weights truncated

Figure 1. Estimated BIC-selected marginal weight functions over 100 samples. Columns correspond to Scenarios 1 (left) and 2 (right). The
top row corresponds to Cox MSM with WCE modeling using untruncated IPT weights, while the bottom row shows estimated curves from
Cox MSM with WCE modeling with IPT weights truncated at the 99th percentile. In each panel, the dashed curve is the pointwise mean of the
estimated individual weight functions from 100 samples, shown in gray curves. The true marginal weight function is represented by the solid
dark curve.

A total of 11,625 patients were followed for a median of
6.7 years (IQR: 2.8–11.3). There were 3109 (26.7%) patients
exposed to DDI, with a median exposure of 26.8 months (IQR:
9.1–55.6), including 2418 (20.8%) subjects already exposed
to DDI prior to their first CVD risk assessment, and 691
(5.9%) who started DDI during follow-up. During follow-up,
350 (3.0%) patients developed the composite CVD event, de-
fined, as in D:A:D analyses, as the first occurrence of MI, CVD
death or an invasive CVD procedure (Sabin et al. 2008). As
in the D:A:D analyses, month was used as the unit of time in
Equations (1) and (2) (Sabin et al. 2008).

4.2 Estimated Models

Treatment Models. Measured TD covariates included the
number of previously failed regimens, indicators of hep-
atitis infection (chronic B or C), fat loss, diabetes, ner-
vous system toxicity, gastrointestinal toxicity, pregnancy, stage
of HIV infection (A, B, or C), and current use of three
ARV drugs (zalcitabine, stavudine, and tenofovir) (Young,
Klein, and Ledergerber 2011). Because some of these TD
variables may lie on a causal pathway between the deci-
sion to initiate, continue or interrupt the use of DDI and the



460 Journal of the American Statistical Association, June 2014

development of a CVD event, all analyses reported below use
MSMs (Hernán, Brumback, and Robins 2000).

Stabilized IPT weights were constructed using Equation (3).
The probabilities of receiving the observed DDI treatment at
each one-month interval were estimated using alternative logis-
tic regression models, depending on whether the patient (i) has
not yet initiated DDI (new users) or (ii) has been previously
exposed to DDI (ever users). Both models for the denominator
included the baseline covariates (age at baseline, sex, ethnic-
ity, education, and HIV transmission group) and the above TD
variables, updated at each month. The models in the numerator
of Equation (3) included only the baseline covariates. For the
ever users, we added an indicator for DDI use in the previous
month in both the denominator and the numerator. Details of the
IPT weights calculation are described in the online Appendix
C. Since censoring was mainly administrative and including in-
verse probability of censoring weights (IPCW) did not change
the main results (data not shown), all the MSMs in this article
were estimated using the IPT weights only. In addition, to re-
duce the impact of extremely high weights, we truncated the
IPT weights at the 99th percentile of their distribution across all
person–months of follow-up.

Outcome Models. Because of the uncertainty about the way
that past and current DDI exposure might affect CVD risk, we
considered alternative parameterizations of Cox MSMs and we
compared their fit to data (Abrahamowicz, Beauchamp, and
Sylvestre 2012). All Cox MSMs adjusted for all baseline co-
variates and used the same truncated stabilized IPT weights (de-
scribed above). We first fit four simpler parametric Cox MSMs.
Models 1–3 used the same exposure metrics for DDI as in the
D:A:D analyses (Sabin et al. 2008), and were nested, with each
consecutive model adding one additional DDI-related TD vari-
able (updated at each month of follow-up). Model 1 included
only the total duration of past DDI use; Model 2 added a binary
TD indicator of any “recent DDI use” within the last 6 months;
and Model 3 additionally included a TD indicator of any past
exposure (at least 6 months ago). Finally, Model 2A used sepa-
rate TD indicators of any use in (i) the last month, and (ii) 1–6
months ago.

In addition, we used the proposed flexible Cox WCE MSM
to estimate the potential cumulative effect of past DDI use. Be-
cause of uncertainty regarding for how long past DDI exposure
might still affect current CVD risk, we initially considered alter-
native time windows of c=48 and c=30 months. In preliminary

analyses, the weight function estimated with the 48-month win-
dow showed overfit bias and numerical instability in the right
tail, while their weights estimated for exposures in the past 30
months agreed well with the estimates obtained with the shorter
30-month window (Figure D.2 in the online Appendix). Thus,
in our main Cox WCE MSM analyses, the time window was
limited to the past 30 months. Nine alternative Cox WCE MSMs
were estimated with c=30 months, with different combinations
of 1–3 interior knots, and weight functions constrained at both
ends of the time window, unconstrained, or right-constrained
(see Section 2.2). The optimal WCE MSM was then identified
using BIC and the corresponding weight function was calcu-
lated by multiplying the estimated normalized weight function
(Equation (7)) and the estimated coefficient for WCE (Equation
(6)). The 95% pointwise confidence bounds were constructed
using the variance–covariance matrix of the regression coeffi-
cients for the artificial TD covariates, which together represent
the estimated weight function (see Equation (5)).

Details on goodness-of-fit comparisons, assessment of the
proportional hazards assumption, and the corresponding results
for the SHCS analysis are described in Appendices E and F of
the online Appendix.

4.3 Results

The stabilized IPT weights had a mean of 1.35 and a maxi-
mum of 7309. After truncation at the 99th percentile, the max-
imum weight was reduced to 4.7, with a mean of 1.04. In all
the four parametric MSMs (Models 1–3 and 2A), for all TD
variables representing DDI exposure, 95% confidence intervals
include HR=1.0 (Table 1). Moreover, the deviances of all para-
metric Models 1–3 and 2A (Table E.2 in the online Appendix)
are only marginally lower than the deviance of the null MSM
that adjusts for the same covariates but excludes any effects of
DDI and, thus, reduces degrees of freedom (df) by 1–3. Thus,
all four conventional parametric MSMs consistently indicate the
lack of an association between DDI use and CVD risk. However,
the validity of this conclusion depends on the parameterization
of DDI exposure in these parametric models being correct.

Among alternative Cox WCE MSMs with a 30-month win-
dow, a parsimonious model with one interior knot and a weight
function constrained to zero at both ends of the time window had
the lowest BIC and quasi-likelihood information criterion (Platt
et al. 2013). The weight function estimated by the BIC-selected
WCE MSM is shown in the left panel of Figure 2. The weight

Table 1. Hazard ratios and 95% confidence intervals for the effects of DDI exposure on the risk of a composite cardiovascular event in the
SHCS cohort, estimated with parametric Cox MSMs∗

Model 1 Model 2 Model 2A Model 3

Cumulative use (per year) 1.04 (0.95,1.13) 1.02 (0.92,1.12) 1.01 (0.92, 1.12) 1.04 (0.93, 1.16)
Recent exposure (within last 6 months) 1.23 (0.68,2.21) 1.02 (0.49, 2.10)
Current exposure 1.27 (0.48, 3.38)
Past exposure within 1–6 months 1.03 (0.39, 2.69)
Past exposure more than 6 months ago 0.81 (0.54, 1.21)

NOTE: ∗All MSMs adjusted for age at baseline, sex, ethnicity, education, HIV transmission group, as well as the baseline values of the TD covariates including calendar year, the
number of previously failed regimens, indicators of hepatitis infection (chronic B or C), fat loss, diabetes, nervous system toxicity, gastrointestinal toxicity, pregnancy, previous reported
categories of HIV infection (A, B, or C), and current use of three ARV drugs (zalcitabine, stavudine, and tenofovir). See Online Appendix C.1 for details of IPT weights estimation.
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(a) BIC-selected optimal Cox WCE MSM
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(b) Nine alternative Cox WCE MSMs

Figure 2. The left panel is the estimated weight function of the cumulative effect of DDI on the cardiovascular risk and its 95% pointwise
confidence bands using the BIC-selected Cox WCE MSM. The right panel shows the weight functions estimated using all nine alternative Cox
WCE MSMs, which differed in the choice of the number of interior knots and the boundary constraints in estimating the spline function.

function suggests dual effects of past DDI use on the current
hazard of CVD events. Weights assigned to DDI exposures in the
last year are positive, indicating increased risk, with the highest
impact due to exposures that occurred about 3–6 months ago.
In contrast, DDI use in the more distant past, between one and
two years ago, is assigned negative weights, implying reduced
CVD risk. The corresponding 95% pointwise confidence bands,
over both time intervals, often exclude 0 (Figure 2), suggest-
ing that both the short-term risk increase and the longer-term
protective effect are statistically significant. Similar dual effects
were revealed by most of the alternative WCE MSMs using a
30-month window, even if some unconstrained models show
considerable overfit bias (the right panel of Figure 2), and by all
Cox WCE MSMs using a 48-month window (online Appendix
Figure D.2).

Interestingly, the dual effect of DDI exposure, suggested by
our WCE MSM estimates, is generally consistent with the point
estimates of the parametric MSMs: Model 2 suggests risk in-
crease with recent DDI use, while Model 3 suggests past ex-
posure may have a protective effect (Table 1). However, in the
parametric MSMs, none of the effects of DDI exposure are
significant. This may be due to a combination of (i) the crude
categorization of the time since exposure, and (ii) some overlap
between effects captured by binary indicators of DDI use in
specific periods and total duration of past DDI exposure. With
respect to (i), the nonmonotone weight function estimated in
our WCE MSMs indicates that the effect of “past exposure”
varies largely depending on its timing: from a risk increase for
exposures up to 12 months ago, to a risk reduction for 12–24
months ago, to lack of effect for DDI use more than 2 years ago.
Parametric Model 3 defines “past exposure” as any use more
than 6 months ago and, thus, imposes the restriction that DDI
use in any of these three subintervals must have the same effect,

regardless of its timing and duration. On the other hand, the in-
clusion of total duration of past use in all parametric MSMs 1–3
implies that the risk must systematically either increase or de-
crease with increasing duration, which excludes the possibility
of a dual effect. By avoiding such restrictive assumptions, the
flexible WCE MSM fits the data much better than conventional
MSMs (see online Appendix: Table E.2) and provides new in-
sights about possibly complex mechanisms that may link past
and recent DDI use with CVD risk.

The dual effect of past DDI use on CVD risk was unexpected
and, thus, must be interpreted with caution. Although the find-
ing seems robust with respect to the choice of knots and time
window, it may reflect some confounding bias if, for example,
DDI use is correlated with changes in unmeasured CVD risk
factors. However, the dual effect may also reflect a truly com-
plex combination of direct and indirect effects of DDI exposure.
For example, the risk of peripheral neuropathy (PN) peaks in
the first 3 months of DDI use and then subsides (Arenas-Pinto
et al. 2008), while immunosuppression in advanced HIV infec-
tion is also associated with an increased risk of PN (Ghosh,
Chandran, and Jansen 2012). Hence, DDI could have a dual
effect on PN, with a short-term risk of drug-induced neuropa-
thy but a long-term protective effect, as immunosuppression
abates with increasing duration of continued effective therapy.
If so, then DDI may have a similar dual effect on other forms
of neuropathy, such as the cardiovascular autonomic neuropa-
thy associated with sudden MI in diabetic patients (Kuehl and
Stevens 2012). This possible explanation needs to be investi-
gated in future, but our example illustrates how WCE modeling
can lead to new, testable hypotheses about complex causal path-
ways linking drug use with clinical outcomes.

To further explore the implications of a dual effect of past
DDI use, Figure 3 compares how the cumulative effect of being
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(b) Four parametric Cox MSMs

Figure 3. The left panel shows the total cumulative effect (HR) of being always treated with DDI (vs. never treated) as a function of treatment
duration estimating by the BIC-selected Cox WCE model, with the 95% pointwise confidence bounds. The right panel shows the total cumulative
effects as a function of treatment duration estimated by the four parametric Cox MSMs, separately.

always treated (vs. never being treated), estimated with different
models, changes with increasing treatment duration. Consistent
with the estimated weight function (Figure 2), Figure 3(a) shows
that, according to the BIC-selected WCE MSM, CVD risk grad-
ually increases during the first year of uninterrupted DDI treat-
ment. One year after treatment initiation, continuous DDI users
have more than twice the CVD risk of never-users (HR=2.91,
95% CI: 1.20–7.03). However, if the DDI use continues beyond
the first year, the risk gradually decreases and by about 2 years
after the treatment initiation it does not differ from the subjects
who never used DDI (HR=0.96, 95% CI: 0.47–1.88).

Figure 3(a) highlights the statistically significant short-term
cumulative effect of recent DDI use, that may result in a more
than doubling of the CVD risk after about one year of con-
tinuous treatment. This important short-term risk increase was
not detected by any of the four conventional parametric MSMs
(see Figure 3(b)). Each of these simpler MSMs imposed a priori
certain dose–response relationship, such as monotonic changes
in risks with increasing DDI use (Models 1, 2, and 2A), with
possible jumps at specific, arbitrary time points (Models 2, 2A,
and 3). These restrictive assumptions seem incompatible with
the complex relationship between DDI use and CVD risk (see
Figure 3(a)), resulting in weak cumulative effect estimates using
conventional MSMs (see Figure 3(b)).

5. DISCUSSION

The new flexible Cox WCE MSM simultaneously addresses
two analytical challenges of observational longitudinal studies:
(i) modeling the cumulative effect of a time-dependent (TD)
treatment/exposure and (ii) controlling for TD confounders
which also act as mediators of the effect of past treatments.
Specifically, the model uses (i) cubic regression B-splines for

flexible modeling of the weight function describing how the
effects of past treatments cumulate over time (Sylvestre and
Abrahamowicz 2009), and (ii) IPT weighting to control for the
TD confounding/mediating variables (Hernán, Brumback, and
Robins 2000). The fact that the Cox WCE MSM can be fitted
using standard software for a TD Cox model, by adding artificial
TD covariates and IPT weights, facilitates its use in applications.

In simulations, the proposed flexible Cox WCE MSM yielded
acceptably accurate estimates of the marginal causal treatment
effect and of the weight function. However, the weight function
estimates had large variability. Truncation of the IPT weights at
the 99th percentile of their distribution dramatically reduced the
variability of the weight functions with only a slightly increased
bias.

In the SHCS analyses, we estimated the effect of past DDI use
on current CVD risk using alternative Cox MSMs. Results of
all four conventional MSMs, with DDI exposure parameterized
as in the previous studies (Sabin et al. 2008; Worm et al. 2010),
consistently suggested a lack of an association between DDI
use and CVD risk. The Cox WCE MSM substantially improved
model fit over all four conventional MSMs, which reflects their
inability to capture complex exposure effects. Without a priori
assuming any specific form of the weight function, the BIC-
selected Cox WCE MSM suggests that past DDI use may have
dual effects: DDI use in the past 12 months increases the current
CVD risk, while DDI use in the more distant past is associated
with reduced CVD risk. The corresponding 95% confidence
bands for the estimated weight function over both time intervals
often exclude 0, suggesting that the dual effects are unlikely to
reflect merely sampling error, in contrast to the null results of
all conventional MSMs. The dual effect was robust to different
choices of the number of knots, the time window and boundary
constraints. In spite of the dual effect, continuous users of DDI
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are never protected against CVD risk: with increasing treatment
duration, the early risk increase is eventually balanced out by
potential indirect benefits of previous use, so that long-term
users have risks very similar to never-users. The flexible WCE
modeling detected a statistically significant doubling of the CVD
risk after about a year of continuous treatment, which was not
identified by any of the conventional models.

The Cox WCE MSM may be of interest in other analyses
of the effects of time-varying treatments or exposures, espe-
cially in the case of little a priori knowledge regarding how
exposure history affect current hazard and concerns about TD
confounders/mediators. In our opinion, the former concern is
best addressed by fitting several clinically plausible models,
including both the proposed Cox WCE MSM and more conven-
tional MSMs, and then using goodness-of-fit criteria to identify
the model(s) most consistent with the data (Abrahamowicz,
Beauchamp, and Sylvestre 2012). The DDI analyses illustrate
how the results of different models can be jointly interpreted
while taking into account the differences in the underlying as-
sumptions. The flexible WCE MSM, which avoids restrictive as-
sumptions of conventional models, is able to accurately model a
large variety of possibly complex exposure–risk associations. In
the case of relatively simple relationships, for example, limited
to the acute effect of exposure in the last few days, goodness-
of-fit criteria will likely indicate that the additional degrees of
freedoms required by the WCE model are not warranted, sug-
gesting simpler models such as current exposure are sufficient
(Abrahamowicz, Beauchamp, and Sylvestre 2012).

Further research is necessary to address remaining challenges.
The proposed flexible Cox WCE MSM should be extended to
test the proportional hazards assumption which implies that the
estimated cumulative treatment effect remains constant during
the follow-up (Abrahamowicz and MacKenzie 2007). Further-
more, methods to deal with unobserved confounding in simpler
MSM analyses (Brumback et al. 2004) or instrumental vari-
ables approaches, developed specifically for studies of adverse
effects of treatments (Brookhart et al. 2006), should be adapted
to flexible MSM analyses of time-to-event data. Finally, there
is a need to validate goodness-of-fit criteria for the comparisons
of weighted likelihoods for nonnested MSMs that involve IPT
weights.

The analysis of the SHCS data has some limitations. First, if
we knew the date of subject’s seroconversion after exposure to
HIV virus, it would define a more clinically meaningful time
zero than the date of a patient’s first record after April 2000,
when the CVD risk assessments became part of routine follow-
up. Second, 20.8% of the DDI ever-users began use before
April 2000. Because these prevalent DDI users were slightly
sicker than those who were DDI naı̈ve, their inclusion could lead
to an overestimation of the DDI–CVD association. However,
we believe that with the proper modeling of the IPT weights
separately for new and past DDI users (see online Appendix C),
such potential selection biases have been well controlled.

As in all observational data analyses, we relied on the
untestable assumption of no unmeasured confounders. How-
ever, unobserved confounders will affect all alternative models
and thus are unlikely to have a major impact on the model com-
parison using goodness of fit. In addition, to reduce the risk of
model misspecification which could bias causal effect estimates

(Robins and Hernán 2008), our treatment models included all
the measured potential confounders identified based on prior
knowledge. Our flexible WCE modeling substantially reduces
the risk of a serious misspecification of the exposure–response
relationship, compared to conventional models which rely on
simple exposure indicators. Finally, while we suggested a pos-
sible reason for the dual effect of DDI exposure, this finding has
to be confirmed in independent analyses of other HIV-positive
populations. The apparent protective effect of DDI use 1–2 years
ago might reflect a depletion of susceptibles if most patients
prone to adverse events discontinue the drug after only a short
time.

The flexible Cox WCE MSM provides new insights that may
reconcile inconsistent earlier findings of the effect of DDI use on
CVD risk. The model allows the effects of past use to smoothly
change over time, avoiding clinically implausible jumps im-
posed by the conventional models at arbitrarily chosen times
(e.g., one or six months after exposure). Further, the sugges-
tion of potential dual effect of past DDI use on CVD risk
may help generate new hypotheses regarding the underlying
mechanism(s). Most importantly, the flexible analyses revealed
a clinically important, two-fold increase in CVD risks associ-
ated with uninterrupted DDI use in the past year, which was not
detected by any of the conventional models. We anticipate that
this new flexible Cox WCE MSM may help disentangle com-
plex effects of TD treatments in different settings, and stimulate
further methodological developments in the challenging but so-
cietally important field of research on the adverse effects of
medication.

SUPPLEMENTARY MATERIALS

Section A discusses details of BIC-based selection of the
best-fitting, that is, minimum BIC, WCE model, among the al-
ternative models with different number of knots, time windows
and constraints. Section B describes in detail the methods and
the assumptions used to generate the data analyzed in our sim-
ulations. Section C provides information on the estimation of
the treatment model for the application, in the Swiss HIV Co-
hort study (SHCS), including estimation of the IPT weights, and
their distribution. Section D, and specifically Figure D2, present
results of sensitivity analyses, and compares the weight func-
tion for the effects of past and recent DDI use, obtained with
alternative WCE MSM models, whereas section E compares
the fit of the WCE MSM with the simpler parametric MSM’s,
using different goodness-of-fit criteria. Section F presents both
the approximate method used to assess if the PH assumption
does hold for the WCE MSM model estimated for the SHCS
application, and the results of these analyses. Finally, section
G provides the R code used to implement WCE MSM in the
SHCS analyses.

[Received November 2012. Revised November 2013.]

REFERENCES

Abrahamowicz, M., Bartlett, G., Tamblyn, R., and du Berger, R. (2006), “Mod-
eling Cumulative Dose and Exposure Duration Provided Insights Regarding
Associations Between Benzodiazepines and Injuries,” Journal of Clinical
Epidemiology, 59, 393–403. [456]



464 Journal of the American Statistical Association, June 2014

Abrahamowicz, M., Beauchamp, M., and Sylvestre, M. (2012), “Comparison
of Alternative Models for Linking Drug Exposure With Adverse Effects,”
Statistics in Medicine, 31, 1014–1030. [456,460,463]

Abrahamowicz, M., and MacKenzie, T. (2007), “Joint Estimation of Time-
Dependent and Non-Linear Effects of Continuous Covariates on Survival,”
Statistics in Medicine, 26, 392–408. [463]

Abrahamowicz, M., MacKenzie, T., and Esdaile, J. (1996), “Time-Dependent
Hazard Ratio: Modeling and Hypothesis Testing With Application in Lupus
Nephritis,” Journal of the American Statistical Association, 91, 1432–1439.
[457]

Abrahamowicz, M., and Tamblyn, R. (2005), “Drug Utilization Patterns,” in
Encyclopedia of Biostatistics (2nd ed.), eds. P. Armitage and T. Colton,
New York: Wiley, pp. 1533–1553. [455]

Arenas-Pinto, A., Bhaskaran, K., Dunn, D., and Weller, I. (2008), “The Risk of
Developing Peripheral Neuropathy Induced by Nucleoside Reverse Tran-
scriptase Inhibitors Decreases Over Time: Evidence From the Delta Trial,”
Antiviral Therapy, 13, 289–295. [461]

Bavinger, C., Bendavid, E., Niehaus, K., Olshen, R. A., Olkin, I., Sundaram,
V., Wein, N., Holodniy, M., Hou, N., Owens, D. K., et al. (2013), “Risk of
Cardiovascular Disease From Antiretroviral Therapy for HIV: A Systematic
Review,” PLoS One, 8, e59551, 1–14. [455]

Brookhart, M. A., Wang, P., Solomon, D. H., and Schneeweiss, S. (2006),
“Evaluating Short-Term Drug Effects Using a Physician-Specific Prescrib-
ing Preference as an Instrumental Variable,” Epidemiology (Cambridge,
Mass.), 17, 268–275. [463]

Brumback, B. A., Hernán, M. A., Haneuse, S. J., and Robins, J. M. (2004),
“Sensitivity Analyses for Unmeasured Confounding Assuming a Marginal
Structural Model for Repeated Measures,” Statistics in Medicine, 23,
749–767. [463]

Carr, A., and Amin, J. (2009), “Efficacy and Tolerability of Initial Antiretroviral
Therapy: A Systematic Review,” AIDS, 23, 343–353. [455]

Chowers, M., Gottesman, B.-S., Leibovici, L., Schapiro, J., and Paul, M.
(2010), “Nucleoside Reverse Transcriptase Inhibitors in Combination Ther-
apy for HIV Patients: Systematic Review and Meta-Analysis,” Euro-
pean Journal of Clinical Microbiology & Infectious Diseases, 29, 779–
786. [455]

Cole, S., and Hernán, M. (2008), “Constructing Inverse Probability Weights
for Marginal Structural Models,” American Journal of Epidemiology, 168,
656–664. [457]

Csajka, C., and Verotta, D. (2006), “Pharmacokinetic–Pharmacodynamic Mod-
elling: History and Perspectives,” Journal of Pharmacokinetics and Phar-
macodynamics, 33, 227–279. [456]

Dixon, W., Abrahamowicz, M., Beauchamp, M., Ray, D., Bernatsky, S., Su-
issa, S., and Sylvestre, M. (2012), “Immediate and Delayed Impact of Oral
Glucocorticoid Therapy on Risk of Serious Infection in Older Patients With
Rheumatoid Arthritis: A Nested Case–Control Analysis,” Annals of the
Rheumatic Diseases, 71, 1128–1133. [456]

Ghosh, S., Chandran, A., and Jansen, J. P. (2012), “Epidemiology of HIV-
Related Neuropathy: A Systematic Literature Review,” AIDS Research and
Human Retroviruses, 28, 36–48. [461]

Hernán, M., Brumback, B., and Robins, J. (2000), “Marginal Structural Models
to Estimate the Causal Effect of Zidovudine on the Survival of HIV-Positive
Men,” Epidemiology, 11, 561–570. [456,457,460,462]

Hernán, M., Cole, S., Margolick, J., Cohen, M., and Robins, J. (2005), “Struc-
tural Accelerated Failure Time Models for Survival Analysis in Studies
With Time-Varying Treatments,” Pharmacoepidemiology and Drug Safety,
14, 477–492. [458]

Hernández, D., Muriel, A., Abraira, V., Pérez, G., Porrini, E., Marrero, D.,
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